June 30, 2020

Contents

	Pref	ace	XV		
	Notation				
	List of Figures				
	List	of Tables	xlvii		
Ι	INT	RODUCTION TO MACHINE LEARNING AND			
	DAT	TA ANALYTICS	1		
1	Mac	chine Learning for Predictive Data Analytics	3		
	1.1	What Is Predictive Data Analytics?	3		
	1.2	What Is Machine Learning?	5		
	1.3	How Does Machine Learning Work?	7		
	1.4	Inductive Bias Versus Sample Bias	12		
	1.5	What Can Go Wrong with Machine Learning?	13		
	1.6	The Predictive Data Analytics Project Lifecycle: CRISP-DM	15		
	1.7	Predictive Data Analytics Tools	17		
	1.8	The Road Ahead	19		
	1.9	Exercises	21		
2	Data	a to Insights to Decisions	23		
	2.1	Converting Business Problems into Analytics Solutions	23		
		2.1.1 Case Study: Motor Insurance Fraud	25		
	2.2	Assessing Feasibility	26		
		2.2.1 Case Study: Motor Insurance Fraud	27		
	2.3	Designing the Analytics Base Table	28		
		2.3.1 Case Study: Motor Insurance Fraud	31		
	2.4	Designing and Implementing Features	32		
		2.4.1 Different Types of Data	34		

		2.4.2 Different Types of Features	34
		2.4.3 Handling Time	36
		2.4.4 Legal Issues	39
		2.4.5 Implementing Features	41
		2.4.6 Case Study: Motor Insurance Fraud	42
	2.5	Summary	44
	2.6	Further Reading	47
	2.7	Exercises	48
3	Data	a Exploration	53
	3.1	The Data Quality Report	54
		3.1.1 Case Study: Motor Insurance Fraud	55
	3.2	Getting to Know the Data	55
		3.2.1 The Normal Distribution	61
		3.2.2 Case Study: Motor Insurance Fraud	62
	3.3	Identifying Data Quality Issues	63
		3.3.1 Missing Values	64
		3.3.2 Irregular Cardinality	64
		3.3.3 Outliers	65
		3.3.4 Case Study: Motor Insurance Fraud	66
	3.4	Handling Data Quality Issues	69
		3.4.1 Handling Missing Values	69
		3.4.2 Handling Outliers	70
		3.4.3 Case Study: Motor Insurance Fraud	71
	3.5	Advanced Data Exploration	72
		3.5.1 Visualizing Relationships between Features	72
		3.5.2 Measuring Covariance and Correlation	81
	3.6	Data Preparation	87
		3.6.1 Normalization	87
		3.6.2 Binning	89
		3.6.3 Sampling	91
	3.7	Summary	94
	3.8	Further Reading	95
	3.9	Exercises	96
Π	PRF	EDICTIVE DATA ANALYTICS	115
4	Info	rmation-Based Learning	117
	4.1	Big Idea	117
	4.2	Fundamentals	120

viii

5

6

	4.2.1	Decision Trees	121
	4.2.2	Shannon's Entropy Model	123
	4.2.3	Information Gain	127
4.3	Stand	ard Approach: The ID3 Algorithm	132
	4.3.1	A Worked Example: Predicting Vegetation Distributions	135
4.4	Exten	sions and Variations	141
	4.4.1	Alternative Feature Selection and Impurity Metrics	142
	4.4.2	Handling Continuous Descriptive Features	146
	4.4.3	Predicting Continuous Targets	149
	4.4.4	Tree Pruning	153
	4.4.5	Model Ensembles	158
4.5	Sumn	nary	169
4.6	Furthe	er Reading	170
4.7	Exerc	ises	172
Simi	ilarity-]	Based Learning	181
5.1	Big Ic	lea	181
5.2	Funda	mentals	182
	5.2.1	Feature Space	183
	5.2.2	Measuring Similarity Using Distance Metrics	184
5.3	Stand	ard Approach: The Nearest Neighbor Algorithm	187
	5.3.1	A Worked Example	188
5.4	Exten	sions and Variations	191
	5.4.1	Handling Noisy Data	191
	5.4.2	Efficient Memory Search	196
	5.4.3	Data Normalization	204
	5.4.4	Predicting Continuous Targets	208
	5.4.5	Other Measures of Similarity	211
	5.4.6	Feature Selection	223
5.5	Sumn	nary	230
5.6	Furthe	er Reading	233
5.7	Epilog	gue	234
5.8	Exerc	ises	236
Prob	bability	-Based Learning	243
6.1	Big Id	lea	243
6.2	Funda	mentals	245
	6.2.1	Bayes' Theorem	248
	6.2.2	Bayesian Prediction	251
	6.2.3	Conditional Independence and Factorization	256

Х

•	•	•	•	_	٣	•	•••	

Contents

	6.3	Standard Approach: The Naive Bayes Model	261
	6 1	6.3.1 A worked Example	202
	0.4	6.4.1 Smoothing	205
		6.4.2 Continuous Features: Probability Density Functions	205
		6.4.3 Continuous Features: Rinning	280
		6.4.4 Bayesian Networks	284
	65	Summary	300
	6.6	Further Reading	303
	6.7	Exercises	305
7	Erro	or-Based Learning	311
	7.1	Big Idea	311
	7.2	Fundamentals	312
		7.2.1 Simple Linear Regression	312
		7.2.2 Measuring Error	315
		7.2.3 Error Surfaces	317
	7.3	Standard Approach: Multivariable Linear Regression with Gradient	
		Descent	319
		7.3.1 Multivariable Linear Regression	319
		7.3.2 Gradient Descent	321
		7.3.3 Choosing Learning Rates and Initial Weights	328
		7.3.4 A Worked Example	330
	7.4	Extensions and Variations	332
		7.4.1 Interpreting Multivariable Linear Regression Models	332
		7.4.2 Setting the Learning Rate Using Weight Decay	334
		7.4.3 Handling Categorical Descriptive Features	336
		7.4.4 Handling Categorical Target Features: Logistic Regression	338
		7.4.5 Modeling Non-Linear Relationships	351
		7.4.6 Multinomial Logistic Regression	357
		7.4.7 Support Vector Machines	361
	7.5	Summary	367
	7.6	Further Reading	370
	7.7	Exercises	371
8	Deep	o Learning	381
	8.1	Big Idea	382
	8.2	Fundamentals	383
		8.2.1 Artificial Neurons	384
		8.2.2 Artificial Neural Networks	388

9

	8.2.3	Neural Networks as Matrix Operations	390	
	8.2.4 Why Are Non-Linear Activation Functions Necessary?			
	8.2.5	Why Is Network Depth Important?	395	
8.3	Standa	ard Approach: Backpropagation and Gradient Descent	403	
	8.3.1	Backpropagation: The General Structure of the Algorithm	404	
	8.3.2	Backpropagation: Backpropagating the Error Gradients	407	
	8.3.3	Backpropagation: Updating the Weights in a Network	413	
	8.3.4	Backpropagation: The Algorithm	418	
	8.3.5	A Worked Example: Using Backpropagation to Train a		
		Feedforward Network for a Regression Task	421	
8.4	Exten	sions and Variations	434	
	8.4.1	Vanishing Gradients and ReLUs	434	
	8.4.2	Weight Initialization and Unstable Gradients	447	
	8.4.3	Handling Categorical Target Features: Softmax Output		
		Layers and Cross-Entropy Loss Functions	463	
	8.4.4	Early Stopping and Dropout: Preventing Overfitting	472	
	8.4.5	Convolutional Neural Networks	477	
	8.4.6	Sequential Models: Recurrent Neural Networks and Long		
		Short-Term Memory Networks	499	
8.5	Summ	nary	521	
8.6	Furthe	er Reading	523	
8.7	Exerc	ises	524	
Eval	luation		533	
9.1	Big Id	lea	533	
9.2	Funda	mentals	534	
9.3	Standa	ard Approach: Misclassification Rate on a Hold-Out Test Set	535	
9.4	Exten	sions and Variations	540	
	9.4.1	Designing Evaluation Experiments	540	
	9.4.2	Performance Measures: Categorical Targets	547	
	9.4.3	Performance Measures: Prediction Scores	556	
	9.4.4	Performance Measures: Multinomial Targets	572	
	9.4.5	Performance Measures: Continuous Targets	574	
	9.4.6	Evaluating Models after Deployment	578	
9.5	Summ	nary	585	
9.6	Furthe	er Reading	586	
9.7	Exercises			

III	BEYOND PREDICTION	595
10	Beyond Prediction: Unsupervised Learning	597
	10.1 Big Idea	597
	10.2 Fundamentals	598
	10.3 Standard Approach: The <i>k</i> -Means Clustering Algorithm	600
	10.3.1 A Worked Example	601
	10.4 Extensions and Variations	605
	10.4.1 Choosing Initial Cluster Centroids	605
	10.4.2 Evaluating Clustering	607
	10.4.3 Choosing the Number of Clusters	612
	10.4.4 Understanding Clustering Results	613
	10.4.5 Agglomerative Hierarchical Clustering	616
	10.4.6 Representation Learning with Auto-Encoders	624
	10.5 Summary	628
	10.6 Further Reading	629
	10.7 Exercises	631
11	Beyond Prediction: Reinforcement Learning	637
	11.1 Big Idea	637
	11.2 Fundamentals	638
	11.2.1 Intelligent Agents	639
	11.2.2 Fundamentals of Reinforcement Learning	640
	11.2.3 Markov Decision Processes	643
	11.2.4 The Bellman Equations	651
	11.2.5 Temporal-Difference Learning	654
	11.3 Standard Approach: Q-Learning, Off-Policy Temporal-Difference	
	Learning	657
	11.3.1 A Worked Example	659
	11.4 Extensions and Variations	664
	11.4.1 SARSA, On-Policy Temporal-Difference Learning	664
	11.4.2 Deep Q Networks	668
	11.5 Summary	674
	11.6 Further Reading	677
	11.7 Exercises	679

xii

Cont	tents	xiii
IV	CASE STUDIES AND CONCLUSIONS	683
12	Case Study: Customer Churn	685
	12.1 Business Understanding	685
	12.2 Data Understanding	688
	12.3 Data Preparation	691
	12.4 Modeling	697
	12.5 Evaluation	698
	12.6 Deployment	702
13	Case Study: Galaxy Classification	703
	13.1 Business Understanding	704
	13.1.1 Situational Fluency	706
	13.2 Data Understanding	707
	13.3 Data Preparation	713
	13.4 Modeling	719
	13.4.1 Baseline Models	719
	13.4.2 Feature Selection	722
	13.4.3 The 5-Level Model	722
	13.5 Evaluation	725
	13.6 Deployment	727
14	The Art of Machine Learning for Predictive Data Analytics	729
	14.1 Different Perspectives on Prediction Models	731
	14.2 Choosing a Machine Learning Approach	735
	14.2.1 Matching Machine Learning Approaches to Projects	738
	14.2.2 Matching Machine Learning Approaches to Data	739
	14.3 Beyond Prediction	740
	14.4 Your Next Steps	741
V	APPENDICES	743
A	Descriptive Statistics and Data Visualization for Machine Learning	745
	A.1 Descriptive Statistics for Continuous Features	745
	A.1.1 Central Tendency	745
	A.1.2 Variation	746
	A.2 Descriptive Statistics for Categorical Features	749
	A.3 Populations and Samples	750
	A.4 Data Visualization	752
	A.4.1 Bar Plots	752
	A.4.2 Histograms	752

xiv		Contents
	A.4.3 Box Plots	755
В	Introduction to Probability for Machine Learning	757
	B.1 Probability Basics	757
	B.2 Probability Distributions and Summing Out	761
	B.3 Some Useful Probability Rules	762
	B.4 Summary	763
С	Differentiation Techniques for Machine Learning	765
	C.1 Derivatives of Continuous Functions	766
	C.2 The Chain Rule	768
	C.3 Partial Derivatives	768
D	Introduction to Linear Algebra	771
	D.1 Basic Types	771
	D.2 Transpose	772
	D.3 Multiplication	772
	D.4 Summary	774
	Bibliography	775
	Index	787

viv