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Interpreting Multivariable Linear
Regression Models
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The weights used by linear regression models indicate the
effect of each descriptive feature on the predictions
returned by the model.
Both the sign and the magnitude of the weight provide
information on how the descriptive feature effects the
predictions of the model.

Table: Weights and standard errors for each feature in the office
rentals model.

Descriptive Feature Weight Standard Error t-statistic p-value
SIZE 0.6270 0.0545 11.504 <0.0001
FLOOR -0.1781 2.7042 -0.066 0.949
BROADBAND RATE 0.071396 0.2969 0.240 0.816
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It is tempting to infer the relative importance of the different
descriptive features in the model from the magnitude of the
weights
However, direct comparison of the weights tells us little
about their relative importance.
A better way to determine the importance of each
descriptive feature in the model is to perform a statistical
significance test.
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The statistical significance test we use to analyze the
importance of a descriptive feature d [j] in a linear
regression model is the t-test.
The null hypothesis for this test is that the feature does not
have a significant impact on the model. The test statistic
we calculate is called the t-statistic.
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The standard error for the overall model is calculated as

se =

√√√√√√
n∑

i=1

(ti −Mw(di))
2

n − 2
(1)

A standard error calculation is then done for a descriptive
feature as follows:

se(d [j]) =
se√√√√ n∑

i=1

(
di [j]− d [j]

)2
(2)

The t-statistic for this test is calculated as follows:

t =
w [j]

se (d [j])
(3)
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Using a standard t-statistic look-up table, we can then
determine the p-value associated with this test (this is a
two tailed t-test with degrees of freedom set to the number
of instances in the training set minus 2).
If the p-value is less than the required significance level,
typically 0.05, we reject the null hypothesis and say that
the descriptive feature has a significant impact on the
model; otherwise we say that it does not.

Table: Weights and standard errors for each feature in the office
rentals model.

Descriptive Feature Weight Standard Error t-statistic p-value
SIZE 0.6270 0.0545 11.504 <0.0001
FLOOR -0.1781 2.7042 -0.066 0.949
BROADBAND RATE 0.071396 0.2969 0.240 0.816
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Setting the Learning Rate Using
Weight Decay
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Learning rate decay allows the learning rate to start at a
large value and then decay over time according to a
predefined schedule.
A good approach is to use the following decay schedule:

ατ = α0
c

c + τ
(4)
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Figure: (a) The journey across the error surface for the office rentals
prediction problem when learning rate decay is used (α0 = 0.18,
c = 10 ); (b) a plot of the changing sum of squared error values
during this journey.



Interpreting Learning Rate Cat. Features Logistic Reg. Non-Linear Relationships Multinomial SVM

1
2

3

4
5

6

7
8

9

(a)

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

5 10 15

0
50

10
0

15
0

20
0

25
0

Training Iteration

Su
m

 o
f S

qu
ar

ed
 E

rro
rs

(b)

Figure: (a) The journey across the error surface for the office rentals
prediction problem when learning rate decay is used (α0 = 0.25,
c = 100); (b) a plot of the changing sum of squared error values
during this journey.



Interpreting Learning Rate Cat. Features Logistic Reg. Non-Linear Relationships Multinomial SVM

Handling Categorical Descriptive
Features
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The basic structure of the multivariable linear regression
model allows for only continuous descriptive features, so
we need a way to handle categorical descriptive features.
The most common approach to handling categorical
features uses a transformation that converts a single
categorical descriptive feature into a number of continuous
descriptive feature values that can encode the levels of the
categorical feature.
For example, the ENERGY RATING descriptive feature
would be converted into three new continuous descriptive
features, as it has 3 distinct levels: ’A’, ’B’, or ’C’.
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Table: The office rentals dataset adjusted to handle the categorical
ENERGY RATING descriptive feature in linear regression models.

BROADBAND ENERGY ENERGY ENERGY RENTAL
ID SIZE FLOOR RATE RATING A RATING B RATING C PRICE

1 500 4 8 0 0 1 320
2 550 7 50 1 0 0 380
3 620 9 7 1 0 0 400
4 630 5 24 0 1 0 390
5 665 8 100 0 0 1 385
6 700 4 8 0 1 0 410
7 770 10 7 0 1 0 480
8 880 12 50 1 0 0 600
9 920 14 8 0 0 1 570

10 1 000 9 24 0 1 0 620
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Returning to our example, the regression equation for this
RENTAL PRICE model would change to

RENTAL PRICE = w [0] + w [1]× SIZE + w [2]× FLOOR

+ w [3]× BROADBAND RATE

+ w [4]× ENERGY RATING A
+ w [5]× ENERGY RATING B
+ w [6]× ENERGY RATING C

where the newly added categorical features allow the
original ENERGY RATING feature to be included.
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Handling Categorical Target
Features: Logistic Regression



Table: A dataset listing features for a number of generators.

ID RPM VIBRATION STATUS
1 568 585 good
2 586 565 good
3 609 536 good
4 616 492 good
5 632 465 good
6 652 528 good
7 655 496 good
8 660 471 good
9 688 408 good
10 696 399 good
11 708 387 good
12 701 434 good
13 715 506 good
14 732 485 good
15 731 395 good
16 749 398 good
17 759 512 good
18 773 431 good
19 782 456 good
20 797 476 good
21 794 421 good
22 824 452 good
23 835 441 good
24 862 372 good
25 879 340 good
26 892 370 good
27 913 373 good
28 933 330 good

ID RPM VIBRATION STATUS
29 562 309 faulty
30 578 346 faulty
31 593 357 faulty
32 626 341 faulty
33 635 252 faulty
34 658 235 faulty
35 663 299 faulty
36 677 223 faulty
37 685 303 faulty
38 698 197 faulty
39 699 311 faulty
40 712 257 faulty
41 722 193 faulty
42 735 259 faulty
43 738 314 faulty
44 753 113 faulty
45 767 286 faulty
46 771 264 faulty
47 780 137 faulty
48 784 131 faulty
49 798 132 faulty
50 820 152 faulty
51 834 157 faulty
52 858 163 faulty
53 888 91 faulty
54 891 156 faulty
55 911 79 faulty
56 939 99 faulty
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Figure: A scatter plot of the RPM and VIBRATION descriptive
features from the generators dataset shown in Table 4 [18] where
’good’ generators are shown as crosses and ’faulty’ generators are
shown as triangles.
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Figure: A scatter plot of the RPM and VIBRATION descriptive
features from the generators dataset shown in Table 4 [18]. A decision
boundary separating ’good’ generators (crosses) from ’faulty’
generators (triangles) is also shown.
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As the decision boundary is a linear separator it can be
defined using the equation of the line as:

VIBRATION = 830− 0.667× RPM (5)
or

830− 0.667× RPM − VIBRATION = 0 (6)
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Applying Equation (6)[21] to the instance RPM = 810,
VIBRATION = 495, which is be above the decision
boundary, gives the following result:

830− 0.667× 810− 495 = −205.27

By contrast, if we apply Equation (6)[21] to the instance
RPM = 650 and VIBRATION = 240, which is be below the
decision boundary, we get

830− 0.667× 650− 240 = 156.45
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All the data points above the decision boundary will result
in a negative value when plugged into the decision
boundary equation, while all data points below the decision
boundary will result in a positive value.
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Reverting to our previous notation we have:

Mw(d) =

{
1 if w · d ≥ 0
0 otherwise

(7)

The surface defined by this rule is known as a decision
surface.
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(a) (b)

Figure: (a) A surface showing the value of Equation (6)[21] for all
values of RPM and VIBRATION. The decision boundary given in
Equation (6)[21] is highlighted. (b) The same surface linearly
thresholded at zero to operate as a predictor.



Interpreting Learning Rate Cat. Features Logistic Reg. Non-Linear Relationships Multinomial SVM

The hard decision boundary given in Equation (7)[24] is
discontinuous so is not differentiable and so we can’t
calculate the gradient of the error surface.
Furthermore, the model always makes completely
confident predictions of 0 or 1, whereas a little more
subtlety is desirable.
We address these issues by using a more sophisticated
threshold function that is continuous, and therefore
differentiable, and that allows for the subtlety desired: the
logistic function



Interpreting Learning Rate Cat. Features Logistic Reg. Non-Linear Relationships Multinomial SVM

logistic function

Logistic(x) =
1

1 + e−x (8)

where x is a numeric value and e is Euler’s number and is
approximately equal to 2.7183.
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To build a logistic regression model, we simply pass the
output of the basic linear regression model through the
logistic function

Mw(d) = Logistic(w · d)

=
1

1 + e−w·d (9)

A note on training logistic regression models:
1 Before we train a logistic regression model we map the

binary target feature levels to 0 or 1.
2 The error of the model on each instance is then the

difference between the target feature (0 or 1) and the value
of the prediction [0,1].
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Example

Mw( 〈RPM,VIBRATION〉)

=
1

1 + e−(−0.4077+4.1697×RPM+6.0460×VIBRATION)



Interpreting Learning Rate Cat. Features Logistic Reg. Non-Linear Relationships Multinomial SVM

The decision surface for the example logistic regression
model.



Interpreting Learning Rate Cat. Features Logistic Reg. Non-Linear Relationships Multinomial SVM

P(t = ’faulty’|d) = Mw(d)

P(t = ’good’|d) = 1−Mw(d)
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Figure: A selection of the logistic regression models developed
during the gradient descent process for the machinery dataset from
Table 4 [18]. The bottom-right panel shows the sum of squared error
values generated during the gradient descent process.
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To repurpose the gradient descent algorithm for training
logistic regression models the only change that needs to
be made is i in the weight update rule.
See pg. 360 in book for details of how to derive the new
weight update rule.
The new weight update rule is:

w[j]← w[j] + α×
n∑

i=1

((t −Mw(di))×Mw(di)× (1−Mw(di))× di [j])



ID RPM VIBRATION STATUS
1 498 604 faulty
2 517 594 faulty
3 541 574 faulty
4 555 587 faulty
5 572 537 faulty
6 600 553 faulty
7 621 482 faulty
8 632 539 faulty
9 656 476 faulty

10 653 554 faulty
11 679 516 faulty
12 688 524 faulty
13 684 450 faulty
14 699 512 faulty
15 703 505 faulty
16 717 377 faulty
17 740 377 faulty
18 749 501 faulty
19 756 492 faulty
20 752 381 faulty
21 762 508 faulty
22 781 474 faulty
23 781 480 faulty
24 804 460 faulty
25 828 346 faulty
26 830 366 faulty
27 864 344 faulty
28 882 403 faulty
29 891 338 faulty
30 921 362 faulty
31 941 301 faulty
32 965 336 faulty
33 976 297 faulty
34 994 287 faulty

ID RPM VIBRATION STATUS
35 501 463 good
36 526 443 good
37 536 412 good
38 564 394 good
39 584 398 good
40 602 398 good
41 610 428 good
42 638 389 good
43 652 394 good
44 659 336 good
45 662 364 good
46 672 308 good
47 691 248 good
48 694 401 good
49 718 313 good
50 720 410 good
51 723 389 good
52 744 227 good
53 741 397 good
54 770 200 good
55 764 370 good
56 790 248 good
57 786 344 good
58 792 290 good
59 818 268 good
60 845 232 good
61 867 195 good
62 878 168 good
63 895 218 good
64 916 221 good
65 950 156 good
66 956 174 good
67 973 134 good
68 1002 121 good
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Figure: A scatter plot of the extended generators dataset given in
Table 35 [35], which results in instances with the different target levels
overlapping with each other. ’good’ generators are shown as crosses,
and ’faulty’ generators are shown as triangles.
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For logistic regression models we recommend that
descriptive feature values always be normalized.
In this example, before the training process begins, both
descriptive features are normalized to the range [−1,1].
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For this example let’s assume that:
α = 0.02

Initial Weights
w[0]: -2.9465 w[1]: -1.0147 w[2]: -2.1610
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Iteration 1
TARGET Squared errorDelta(D,w[i])

ID LEVEL Pred. Error Error w[0] w[1] w[2]
1 1 0.5570 0.4430 0.1963 0.1093 -0.1093 0.1093
2 1 0.5168 0.4832 0.2335 0.1207 -0.1116 0.1159
3 1 0.4469 0.5531 0.3059 0.1367 -0.1134 0.1197
4 1 0.4629 0.5371 0.2885 0.1335 -0.1033 0.1244

· · ·
65 0 0.0037 -0.0037 0.0000 0.0000 0.0000 0.0000
66 0 0.0042 -0.0042 0.0000 0.0000 0.0000 0.0000
67 0 0.0028 -0.0028 0.0000 0.0000 0.0000 0.0000
68 0 0.0022 -0.0022 0.0000 0.0000 0.0000 0.0000

Sum 24.4738 2.7031 -0.7015 1.6493
Sum of squared errors (Sum/2) 12.2369
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w[j]← w[j]+α×
n∑

i=1

((ti −Mw(di))×Mw(di)× (1−Mw(di))× di [j])

New Weights (after Iteration 1)
w[0]: -2.8924 w[1]: -1.0287 w[2]: -2.1940
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Iteration 2
TARGET Squared errorDelta(D,w[i])

ID LEVEL Pred. Error Error w[0] w[1] w[2]
1 1 0.5817 0.4183 0.1749 0.1018 -0.1018 0.1018
2 1 0.5414 0.4586 0.2103 0.1139 -0.1053 0.1094
3 1 0.4704 0.5296 0.2805 0.1319 -0.1094 0.1155
4 1 0.4867 0.5133 0.2635 0.1282 -0.0992 0.1194

· · ·
65 0 0.0037 -0.0037 0.0000 0.0000 0.0000 0.0000
66 0 0.0043 -0.0043 0.0000 0.0000 0.0000 0.0000
67 0 0.0028 -0.0028 0.0000 0.0000 0.0000 0.0000
68 0 0.0022 -0.0022 0.0000 0.0000 0.0000 0.0000

Sum 24.0524 2.7236 -0.6646 1.6484
Sum of squared errors (Sum/2) 12.0262
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w[j]← w[j]+α×
n∑

i=1

((ti −Mw(di))×Mw(di)× (1−Mw(di))× di [j])

New Weights (after Iteration 2)
w[0]: -2.8380 w[1]: -1.0416 w[2]: -2.2271
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Figure: A selection of the logistic regression models developed
during the gradient descent process for the extended generators
dataset in Table 35 [35]. The bottom-right panel shows the sum of
squared error values generated during the gradient descent process.
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The final model found is:

Mw( 〈RPM,VIBRATION〉)

=
1

1 + e−(−0.4077+4.1697×RPM+6.0460×VIBRATION)
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Modeling Non-linear
Relationships
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Table: A dataset describing grass growth on Irish farms during July
2012.

ID RAIN GROWTH
1 2.153 14.016
2 3.933 10.834
3 1.699 13.026
4 1.164 11.019
5 4.793 4.162
6 2.690 14.167
7 3.982 10.190
8 3.333 13.525
9 1.942 13.899
10 2.876 13.949
11 4.277 8.643

ID RAIN GROWTH
12 3.754 11.420
13 2.809 13.847
14 1.809 13.757
15 4.114 9.101
16 2.834 13.923
17 3.872 10.795
18 2.174 14.307
19 4.353 8.059
20 3.684 12.041
21 2.140 14.641
22 2.783 14.138

ID RAIN GROWTH
23 3.960 10.307
24 3.592 12.069
25 3.451 12.335
26 1.197 10.806
27 0.723 7.822
28 1.958 14.010
29 2.366 14.088
30 1.530 12.701
31 0.847 9.012
32 3.843 10.885
33 0.976 9.876
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Figure: A scatter plot of the RAIN and GROWTH feature from the
grass growth dataset.
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The best linear model we can learn for this data is:
GROWTH = 13.510 +−0.667× RAIN
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Figure: A simple linear regression model trained to capture the
relationship between the grass growth and rainfall.
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In order to handle non-linear relationships we transform the
data rather than the model using a set of basis functions:

Mw(d) =
b∑

k=0

w[k ]× φk (d) (10)

where φ0 to φb are a series of b basis functions that each
transform the input vector d in a different way.
The advantage of this is that, except for introducing the
mechanism of basis functions, we do not need to make any
other changes to the approach we have presented so far.
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The relationship between rainfall and grass growth in the
grass growth dataset can be accurately represented as a
second order polynomial through the following model:

GROWTH = w[0]× φ0(RAIN) + w[1]× φ1(RAIN) + w[2]× φ2(RAIN)

where

φ0(RAIN) = 1

φ1(RAIN) = RAIN

φ2(RAIN) = RAIN2
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Figure: A selection of the models developed during the gradient
descent process for the grass growth dataset from Table 5 [46]. (Note
that the RAIN and GROWTH features have been range normalized to
the [−1,1] range.)
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GROWTH = 0.3707× φ0(RAIN) + 0.8475× φ1(RAIN) +−1.717× φ2(RAIN)



GROWTH = 0.3707× φ0(RAIN) + 0.8475× φ1(RAIN) +−1.717× φ2(RAIN)

φ0(RAIN) = 1
φ1(RAIN) = RAIN

φ2(RAIN) = RAIN2

What is the predicted growth for the following RAIN values:
1 RAIN= −0.75
2 RAIN= 0.1
3 RAIN= 0.9
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Basis functions can also be used for
1 multivariable simple linear regression models in the same

way, the only extra requirement being the definition of more
basis functions.

2 to train logistic regression models for categorical prediction
problems that involve non-linear relationships.
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Table: A dataset showing participants’ responses to viewing ’positive’
and ’negative’ images measured on the EEG P20 and P45
potentials.

ID P20 P45 TYPE
1 0.4497 0.4499 negative
2 0.8964 0.9006 negative
3 0.6952 0.3760 negative
4 0.1769 0.7050 negative
5 0.6904 0.4505 negative
6 0.7794 0.9190 negative

...

ID P20 P45 TYPE
26 0.0656 0.2244 positive
27 0.6336 0.2312 positive
28 0.4453 0.4052 positive
29 0.9998 0.8493 positive
30 0.9027 0.6080 positive
31 0.3319 0.1473 positive

...
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Figure: A scatter plot of the P20 and P45 features from the EEG
dataset. ’positive’ images are shown as crosses, and ’negative’
images are shown as triangles.



Interpreting Learning Rate Cat. Features Logistic Reg. Non-Linear Relationships Multinomial SVM

A logistic regression model using basis functions is defined
as follows:

Mw(d) =
1

1 + e

−

 b∑
j=0

w[j]φj(d)


(11)
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We will use the following basis functions for the EEG
problem:
φ0(〈P20,P45〉) = 1 φ4(〈P20,P45〉) = P452

φ1(〈P20,P45〉) = P20 φ5(〈P20,P45〉) = P203

φ2(〈P20,P45〉) = P45 φ6(〈P20,P45〉) = P453

φ3(〈P20,P45〉) = P202 φ7(〈P20,P45〉) = P20 × P45
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Figure: A selection of the models developed during the gradient
descent process for the EEG dataset from Table 6 [55]. The final panel
shows the decision surface generated.
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Multinomial Logistic Regression
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Table: A dataset of customers of a large national retail chain.

ID SPEND FREQ TYPE
1 21.6 5.4 single
2 25.7 7.1 single
3 18.9 5.6 single
4 25.7 6.8 single

.

.

.
26 107.9 5.8 business
27 92.9 5.5 business

ID SPEND FREQ TYPE
28 122.6 6.0 business
29 107.7 5.7 business

.

.

.
47 53.2 2.6 family
48 52.4 2.0 family
49 46.1 1.4 family
50 65.3 2.2 family
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Figure: An illustration of three different one-versus-all prediction
models for the customer type dataset in Table 7 [61] that has three
target levels ’single’ (squares), ’business’ (triangles) and ’family’
(crosses).
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For r target feature levels, we build r separate logistic
regression models Mw1 to Mwr :

Mw1(d) = logistic(w1 · d)
Mw2(d) = logistic(w2 · d)

...
Mwr(d) = logistic(wr · d)

(12)

where Mw1 to Mwr are r different one-versus-all logistic
regression models, and w1 to wr are r different sets of
weights.
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To combine the outputs of these different models, we
normalize their results using:

M′wk
(d) =

Mwk(d)∑
l∈levels(t)

Mwl (d) (13)

where M′wk
(d) is a revised, normalized prediction for the

one-versus-all model for the target level k .
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The r one-versus-all logistic regression models used are
trained in parallel, and the revised model outputs, M′wk

(d),
are used when calculating the sum of squared errors for
each model during the training process.
This means that the sum of squared errors function is
changed slightly to

L2(Mwk ,D) =
1
2

n∑
i=1

(
ti −M′wk

(di [1])
)2 (14)
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The revised predictions are also used when making
predictions for query instances. The predicted level for a
query, q, is the level associated with the one-versus-all
model that outputs the highest result after normalization.
We can write this as

M(q) = argmax
l∈levels(t)

M′wl
(q) (15)
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Figure: A selection of the models developed during the gradient
descent process for the customer group dataset from Table 7 [61].
Squares represent instances with the ’single’ target level, triangles
the ’business’ level and crosses the ’family’ level. (f) illustrates the
overall decision boundaries that are learned between the three target
levels.
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Mw’single’(q) = Logistic(0.7993−15.9030×SPEND+9.5974×FREQ)

Mw’family’(q) = Logistic(3.6526+−0.5809×SPEND−17.5886×FREQ)

Mw’business’(q) = Logistic(4.6419+14.9401×SPEND−6.9457×FREQ)
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For a query instance with SPEND = 25.67 and FREQ = 6.12, which are
normalized to SPEND = −0.7279 and FREQ = 0.4789, the predictions
of the individual models would be

Mw’single’(q) = Logistic(0.7993− 15.9030× (−0.7279) + 9.5974× 0.4789)

= 0.9999

Mw’family’(q) = Logistic(3.6526 +−0.5809× (−0.7279)− 17.5886× 0.4789)

= 0.01278

Mw’business’(q) =?
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For a query instance with SPEND = 25.67 and FREQ = 6.12, which are
normalized to SPEND = −0.7279 and FREQ = 0.4789, the predictions
of the individual models would be

Mw’single’(q) = Logistic(0.7993− 15.9030× (−0.7279) + 9.5974× 0.4789)

= 0.9999

Mw’family’(q) = Logistic(3.6526 +−0.5809× (−0.7279)− 17.5886× 0.4789)

= 0.01278

Mw’business’(q) = Logistic(4.6419 + 14.9401× (−0.7279)− 6.9457× 0.4789)

= 0.0518
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These predictions would be normalized as follows:

M′w’single’
(q) =

0.9999
0.9999 + 0.01278 + 0.0518

= 0.9393

M′w’family’
(q) =

0.01278
0.9999 + 0.01278 + 0.0518

= 0.0120

M′w’business’
(q) =

0.0518
0.9999 + 0.01278 + 0.0518

= 0.0487

This means the overall prediction for the query instance is
’single’, as this gets the highest normalized score.
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Support Vector Machines
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Figure: A small sample of the generators dataset with two features,
RPM and VIBRATION, and two target levels, ’good’ (shown as
crosses) and ’bad’ (shown as triangles). A decision boundary with a
very small margin.
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Figure: A small sample of the generators dataset with two features,
RPM and VIBRATION, and two target levels, ’good’ (shown as
crosses) and ’bad’ (shown as triangles). A decision boundary with a
large margin.
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Training a support vector machine involves searching for
the decision boundary, or separating hyperplane, that
leads to the maximum margin as this will best separate the
levels of the target feature.
The instances in a training dataset that fall along the
margin extents, and so define the margins, are known as
the support vectors and define the decision boundary.
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We define the separating hyperplane as follows:

w0 + w · d = 0 (16)

For instances above a separating hyperplane

w0 + w · d > 0

and for instances below a separating hyperplane

w0 + w · d < 0
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We build a support vector machine prediction model so
that instances with the negative target level result in the
model outputting ≤ −1 and instances with the positive
target level result in the model outputting ≥ +1.
The space between the outputs of −1 and +1 allows for
the margin.
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A support vector machine model is defined as

Mααα,w0(q) =
s∑

i=1

(ti ×ααα[i]× (di · q) + w0) (17)

where
q is the set of descriptive features for a query instance;
(d1, t1), . . . , (ds, ts) are s support vectors (instances
composed of descriptive features and a target feature);
w0 is the first weight of the decision boundary;
and ααα is a set of parameters determined during the training
process (there is a parameter for each support vector
ααα [1] , . . . ,ααα [s]).1

1These parameters are formally known as Lagrange multipliers.
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Training a support vector machine is frames as a
constrained quadratic optimization problem
This type of problem is defined in terms of:

1 a set of constraints
2 an optimization criterion.
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The required constraints required by the training process
are

w0 + w · d ≤−1 for ti = −1 (18)

and:

w0 + w · d ≥+1 for ti = +1 (19)

We can combine these two constraints into a single
constraint (remember ti is always equal to either −1 or +1):

ti × (w0 + w · d) ≥ 1 (20)
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(b)

Figure: Different margins that satisfy the constraint in Equation
(20)[81]. The instances that define the margin are highlighted in each
case. (b) shows the maximum margin and also shows two query
instances represented as black dots.
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The optimization criterion used is defined in terms of the
perpendicular distance from any instance to the decision
boundary and is given by

dist(d) =
w0 + abs(w · d)

||w||

where ||w|| is known as the Euclidean norm of w and is
calculated as

||w|| =
√

w [1]2 + w [2]2 + . . .+ w [m]2

For instances along the margin extents,
abs(w · d + w0) = 1.
So, the distance from any instance along the margin
extents to the decision boundary is 1

||w|| , and because the
margin is symmetrical to either side of the decision
boundary, the size of the margin is 2

||w|| .
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The goal when training a support vector machine is
1 maximize 2

||w||
2 subject to the constraint

ti × (w0 + w · d) ≥ 1
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The optimal decision boundary and associated support
vectors for the example we have been following
In this case ’good’ is the positive level and set to +1, and
’faulty’ is the negative level and set to −1.
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The descriptive feature values and target feature values for
the support vectors in these cases are

(〈−0.225,0.217〉 ,+1),
(〈−0.066,−0.069〉 ,−1),
(〈−0.273,−0.080〉 ,−1).

The value of w0 is −0.1838,
The values of the ααα parameters are

〈22.056,6.998,16.058〉.
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The plot shows the position of two new query instances for
this problem.
The descriptive feature values for these querys are

1 q1 = 〈−0.314,−0.251〉
2 q2 = 〈−0.117,0.31〉.
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For the first query instance, q1 = 〈−0.314,−0.251〉, the
output of the support vector machine model is:

Mααα,w0(q1)

= (1× 23.056× ((−0.225×−0.314) + (0.217×−0.251))− 0.1838)

+ (−1× 6.998× ((−0.066×−0.314) + (−0.069×−0.251))− 0.1838)

+ (−1× 16.058× ((−0.273×−0.314) + (−0.080×−0.251))− 0.1838)

=− 2.145

The model output is less than −1, so this query is
predicted to be a ’faulty’ generator.
For the second query instance, the model output is 1.592,
so this instance is predicted to be a ’good’ generator.
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Basis functions can be used with support vector
machines to handle data that is not linearly separable
To use basis functions we update Equation (20)[81] to

ti × (w0 + w ·φφφ (d)) ≥ 1 for all i (21)

where φφφ is a set of basis functions applied to the
descriptive features d, and w is a set of weights containing
one weight for each member of φφφ.
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Typically, the number of basis functions in φφφ is larger than
the number of descriptive features, so the application of
the basis functions moves the data into a
higher-dimensional space.
The expectation is that a linear separating hyperplane will
exist in this higher-dimensional space even though it does
not in the original feature space.
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The prediction model in this case becomes

Mααα,φφφ,w0(q) =
s∑

i=1

(ti ×ααα [i]× (φφφ(di) ·φφφ(q)) + w0) (22)

This equation requires a dot product calculation between
the result of applying the basis functions to the query
instance and to each of the support vectors which is
repeated multiple times during the training process.



Interpreting Learning Rate Cat. Features Logistic Reg. Non-Linear Relationships Multinomial SVM

A dot product is a computationally expensive operation,
We can use a clever trick is used to avoid it:

the same result obtained by calculating the dot product of
the descriptive features of a support vector and a query
instance after having applied the basis functions can be
obtained by applying a much less costly kernel function,
kernel , to the original descriptive feature values of the
support vector and the query.
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The prediction equation becomes

Mααα,kernel,w0(q) =
s∑

i=1

(ti ×ααα[i]× kernel (di ,q) + w0) (23)

A wide range of standard kernel functions can be used with
support vector machines including:

Linear kernel kernel(d,q) = d · q + c
where c is an optional constant

Polynomial kernel kernel(d,q) = (d · q + 1)p

where p is the degree of a poly-
nomial function

Gaussian radial basis kernel kernel(d,q) = exp(−γ||d− q||2)
where γ is a manually chosen
tuning parameter
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