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Imagine a car journey where we start out driving on a minor
road at about 30mph and then move onto a highway where we
drive at about 80mph before noticing an accident and braking
suddenly.
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Figure: (a) the speed of a car during a journey along on the minor
road before joining a motorway and finally coming to a sudden (safe)
halt. (b) shows acceleration, the derivative of speed with respect to
time, during this journey.



Basic Concepts

@ Acceleration is a measure of the rate of change of speed
over time.

@ We can say more formally that acceleration is, in fact, the
derivative of speed with respect to time.

@ Differentiation is the set of techniques from calculus (the
branch of mathematics that deals with how things change)
that allows us to calculate derivatives.



Derivatives of Continuous Functions

@ A continuous function, f(x), generates an output for
every value of a variable x based on some expression
involving x. For example:

f(x) = 2x+38
fx) = x2
f(x) = 3x3+2x2 —x-2
@ The first function is known as a linear function as the

output is a combination of only additions and
multiplications

@ The other two functions are known as polynomial
functions as they include addition, multiplication and
raising to exponents (we show a second order
polynomial function, also known as a quadratic
function and a third order polynomial function, also
known as cubic function.
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Figure: (a) - (b) Some examples of continuous functions, shown as
solid lines, and their derivatives, shown as dashed lines.



Derivatives of Continuous Functions

Derivatives and Slopes!

@ The derivative of a function f(x) with respect to x also
gives us the slope of the function at that value of x.




Derivatives of Continuous Functions

@ To actually calculate the derivative, referred to as % (x), of
a simple continuous function, f(x), we use a small number
of differentiation rules:
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The Chain Rule

@ The function f(x) = (x? 4 1)2 cannot be differentiated
using the rules just described because it is a composite
function - it is a function of a function.
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(@) f(x) = (x* +1)?

Figure: A composite function and it's derivative.



The Chain Rule

@ We can rewrite f(x) as f(x) = (g (x))? where
g(x) = x+1.

@ The differentiation chain rule allows us to differentiate
functions of this kind of function.

The Chain Rule




The Chain Rule

@ Applying this to the example f(x) = (x? + 1)? we get:
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Partial Derivatives

@ Some functions are not defined in terms of just one
variable.

@ For example, f(x,y) = x> —y? +2x +4y —xy + 2is a
function defined in terms of two variables x and y.

@ Rather than defining a curve (as was the case for all of the
previous examples) this function defines a surface.
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A continuous function in two variables, x and y.
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Partial Derivatives

@ Using partial derivatives offers us an easy way to
calculate the derivative of a function like this.

@ A partial derivative (denoted by the symbol 9) of a function
of more than one variable is its derivative with respect to
one of those variables with the other variables held
constant.



Partial Derivatives

@ For the example function
f(x,y) = x2 — y? + 2x + 4y — xy + 2 we get two partial
derivatives:

;((xz—y2+2x+4y—xy+2) = 2x+2—y

where the terms y? and 4y are treated as constants as
they do not include x, and:
;v(xz—y2+2x+4y—xy+2) = 2y +4—x
where the terms x? and 2x are treated as constants as
they do not include y. Figures 5(b) I'®! and 5(c) ["® show
these partial derivatives.



Partial Derivatives
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Figure: (a) a continuous function in two variables, x and y. (b) the
partial derivative of this function with respect to x. (c) the partial
derivative of this function with respect to y.
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