
Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Information-based Learning
Sections 4.4,4.5

John D. Kelleher and Brian Mac Namee and Aoife D’Arcy

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

1 Alternative Feature Selection Metrics

2 Handling Continuous Descriptive Features

3 Predicting Continuous Targets

4 Noisy Data, Overfitting and Tree Pruning

5 Model Ensembles
Bagging
Boosting
Gradient Boosting

6 Summary

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Alternative Feature Selection
Metrics

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Entropy based information gain, preferences features with
many values.
One way of addressing this issue is to use information
gain ratio which is computed by dividing the information
gain of a feature by the amount of information used to
determine the value of the feature:

GR (d ,D) =
IG (d ,D)

−
∑

l∈levels(d)

(P(d = l)× log2(P(d = l)))
(1)

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

IG (STREAM,D) = 0.3060
IG (SLOPE,D) = 0.5774

IG (ELEVATION,D) = 0.8774

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

H (STREAM,D)

= −
∑

l∈
{

true,
false

} P(STREAM = l)× log2 (P(STREAM = l))

= −
((

4
/7 × log2(4

/7)
)

+
(

3
/7 × log2(3

/7)
))

= 0.9852 bits

H (SLOPE,D)

= −
∑

l∈
{

flat,
moderate,
steep

} P(SLOPE = l)× log2 (P(SLOPE = l))

= −
((

1
/7 × log2(1

/7)
)

+
(

1
/7 × log2(1

/7)
)

+
(

5
/7 × log2(5

/7)
))

= 1.1488 bits

H (ELEVATION,D)

= −
∑

l∈


low,
medium,
high,
highest


P(ELEVATION = l)× log2 (P(ELEVATION = l))

= −
((

1
/7 × log2(1

/7)
)

+
(

2
/7 × log2(2

/7)
)

+
(

3
/7 × log2(3

/7)
)

+
(

1
/7 × log2(1

/7)
))

= 1.8424 bits

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

GR (STREAM,D) =
0.3060
0.9852

= 0.3106

GR (SLOPE,D) =
0.5774
1.1488

= 0.5026

GR (ELEVATION,D) =
0.8774
1.8424

= 0.4762

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Slope

conifer

flat

riparian

moderate

Elevation

steep

chaparral

low

Stream

medium

chaparral

high

conifer

highest

riparian

true

chaparral

false

Figure 1: The vegetation classification decision tree generated using
information gain ratio.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Another commonly used measure of impurity is the Gini
index:

Gini (t ,D) = 1−
∑

l∈levels(t)

P(t = l)2 (2)

The Gini index can be thought of as calculating how often
you would misclassify an instance in the dataset if you
classified it based on the distribution of classifications in
the dataset.
Information gain can be calculated using the Gini index by
replacing the entropy measure with the Gini index.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gini (VEGETATION,D)

= 1−
∑

l∈
{

chapparal,
riparian,
conifer

} P(VEGETATION = l)2

= 1−
(

(3/7)2 +
(

2/7

)2
+
(

2/7

)2
)

= 0.6531

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table 1: Partition sets (Part.), entropy, Gini index, remainder (Rem.),
and information gain (Info. Gain) by feature

Split by Partition Info.
Feature Level Part. Instances Gini Index Rem. Gain

STREAM
true D1 d2,d3,d6,d7 0.625 0.5476 0.1054false D2 d1,d4,d5 0.4444

SLOPE
flat D3 d5 0

0.4 0.2531moderate D4 d2 0
steep D5 d1,d3,d4,d6,d7 0.56

ELEVATION

low D6 d2 0

0.3333 0.3198medium D7 d3,d4 0.5
high D8 d1,d5,d7 0.4444

highest D9 d6 0

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Handling Continuous Descriptive
Features

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

The easiest way to handle continuous valued descriptive
features is to turn them into boolean features by defining a
threshold and using this threshold to partition the instances
based their value of the continuous descriptive feature.
How do we set the threshold?

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

1 The instances in the dataset are sorted according to the
continuous feature values.

2 The adjacent instances in the ordering that have different
classifications are then selected as possible threshold
points.

3 The optimal threshold is found by computing the
information gain for each of these classification transition
boundaries and selecting the boundary with the highest
information gain as the threshold.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Once a threshold has been set the dynamically created
new boolean feature can compete with the other
categorical features for selection as the splitting feature at
that node.
This process can be repeated at each node as the tree
grows.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table 2: Dataset for predicting the vegetation in an area with a
continuous ELEVATION feature (measured in feet).

ID STREAM SLOPE ELEVATION VEGETATION

1 false steep 3 900 chapparal
2 true moderate 300 riparian
3 true steep 1 500 riparian
4 false steep 1 200 chapparal
5 false flat 4 450 conifer
6 true steep 5 000 conifer
7 true steep 3 000 chapparal

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table 3: Dataset for predicting the vegetation in an area sorted by the
continuous ELEVATION feature.

ID STREAM SLOPE ELEVATION VEGETATION

2 true moderate 300 riparian
4 false steep 1 200 chapparal
3 true steep 1 500 riparian
7 true steep 3 000 chapparal
1 false steep 3 900 chapparal
5 false flat 4 450 conifer
6 true steep 5 000 conifer

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table 4: Partition sets (Part.), entropy, remainder (Rem.), and
information gain (Info. Gain) for the candidate ELEVATION thresholds:
≥750, ≥1 350, ≥2 250 and ≥4 175.

Split by Partition Info.
Threshold Part. Instances Entropy Rem. Gain

≥750 D1 d2 0.0 1.2507 0.3060D2 d4,d3,d7,d1,d5,d6 1.4591

≥1 350 D3 d2,d4 1.0 1.3728 0.1839D4 d3,d7,d1,d5,d6 1.5219

≥2 250 D5 d2,d4,d3 0.9183 0.9650 0.5917D6 d7,d1,d5,d6 1.0

≥4 175 D7 d2,d4,d3,d7,d1 0.9710 0.6935 0.8631D8 d5,d6 0.0

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Elevation

 D7

 ID Stream Slope Elevation Vegetation
2 true moderate 300 riparian
4 false steep 1,200 chaparral
3 true steep 1,500 riparian
7 true steep 3,000 chaparral
1 false steep 3,900 chaparral

<4,175

 D8
 ID Stream Slope Elevation Vegetation

5 false flat 4,450 conifer
6 true steep 5,000 conifer

≥4,175

Figure 2: The vegetation classification decision tree after the dataset
has been split using ELEVATION ≥ 4 175.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Elevation

Stream

<4,175

conifer

 ≥4,175

Elevation

true

chaparral

false

riparian

<2,250

chaparral

 ≥2,250

Figure 3: The decision tree that would be generated for the
vegetation classification dataset listed in Table 3[17] using information
gain.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Predicting Continuous Targets

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Regression trees are constructed so as to reduce the
variance in the set of training examples at each of the leaf
nodes in the tree
We can do this by adapting the ID3 algorithm to use a
measure of variance rather than a measure of classification
impurity (entropy) when selecting the best attribute

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

The impurity (variance) at a node can be calculated using
the following equation:

var (t ,D) =

∑n
i=1
(
ti − t̄

)2

n − 1
(3)

We select the feature to split on at a node by selecting the
feature that minimizes the weighted variance across the
resulting partitions:

d[best] = arg min
d∈d

∑
l∈levels(d)

|Dd=l |
|D|

× var(t ,Dd=l) (4)

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

-u u u u u u u
Target(a)

-u u u u u u u
Underfitting(b)

-u u u u u u u
Goldilocks(c)

-u u u u u u u
Overfitting

h hh hhhh
(d)

Figure 4: (a) A set of instances on a continuous number line; (b), (c),
and (d) depict some of the potential groupings that could be applied
to these instances.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table 5: A dataset listing the number of bike rentals per day.

ID SEASON WORK DAY RENTALS
1 winter false 800
2 winter false 826
3 winter true 900
4 spring false 2 100
5 spring true 4 740
6 spring true 4 900

ID SEASON WORK DAY RENTALS
7 summer false 3 000
8 summer true 5 800
9 summer true 6 200

10 autumn false 2 910
11 autumn false 2 880
12 autumn true 2 820

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table 6: The partitioning of the dataset in Table 5[25] based on
SEASON and WORK DAY features and the computation of the
weighted variance for each partitioning.

Split by |Dd=l |
|D|

Weighted
Feature Level Part. Instances var (t ,D) Variance

SEASON

winter D1 d1,d2,d3 0.25 2 692

1 379 331 1
3

spring D2 d4,d5,d6 0.25 2 472 533 1
3

summer D3 d7,d8,d9 0.25 3 040 000
autumn D4 d10,d11,d12 0.25 2 100

WORK DAY
true D5 d3,d5,d6,d8,d9,d12 0.50 4 026 346 1

3 2 551 813 1
3false D6 d1,d2,d4,d7,d10,d11 0.50 1 077 280

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Season

 D1

 ID Work Day Rentals
1 false 800
2 false 826
3 true 900

winter

 D2

 ID Work Day Rentals
4 false 2,100
5 true 4,740
6 true 4,900

spring

 D3

 ID Work Day Rentals
7 false 3,000
8 true 5,800
9 true 6,200

summer

 D4

 ID Work Day Rentals
10 false 2,910
11 false 2,880
12 true 2,820

 autumn

Figure 5: The decision tree resulting from splitting the data in Table
5[25] using the feature SEASON.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Season

Work Day

winter

Work Day

spring

Work Day

 summer Work Day

 autumn

ID Rentals Pred.
3 900 900

true

ID Rentals Pred.
1 800 8132 826

 false

ID Rentals Pred.
5 4,740 4,8206 4,900

true

ID Rentals Pred.
4 2,100 2,100

false

ID Rentals Pred.
8 5,800 6,0009 6,200

 true

ID Rentals Pred.
7 3,000 3,000

 false

ID Rentals Pred.
12 2,820 2,820

 true

ID Rentals Pred.
10 2,910 2,89511 2,880

false

Figure 6: The final decision tree induced from the dataset in Table
5[25]. To illustrate how the tree generates predictions, this tree lists the
instances that ended up at each leaf node and the prediction (PRED.)
made by each leaf node.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Noisy Data, Overfitting and Tree
Pruning

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

In the case of a decision tree, over-fitting involves splitting
the data on an irrelevant feature.

The likelihood of over-fitting occurring increases as a tree gets
deeper because the resulting classifications are based on
smaller and smaller subsets as the dataset is partitioned after
each feature test in the path.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Pre-pruning: stop the recursive partitioning early.
Pre-pruning is also known as forward pruning.

Common Pre-pruning Approaches

1 early stopping

2 χ2 pruning

Post-pruning: allow the algorithm to grow the tree as
much as it likes and then prune the tree of the branches
that cause over-fitting.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Common Post-pruning Approach
Using the validation set evaluate the prediction accuracy
achieved by both the fully grown tree and the pruned copy
of the tree. If the pruned copy of the tree performs no
worse than the fully grown tree the node is a candidate for
pruning.

0 50 100 150 200

0.
1

0.
2

0.
3

0.
4

0.
5

Training Iteration

M
is

cl
as

si
fic

at
io

n
R

at
e

Performance on Training Set
Performance on Validation Set

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table 7: An example validation set for the post-operative patient
routing task.

CORE- STABLE-
ID TEMP TEMP GENDER DECISION

1 high true male gen
2 low true female icu
3 high false female icu
4 high false male icu
5 low false female icu
6 low true male icu

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

 Core-Temp
 [icu]

 Gender
 [icu]

low

 Stable-Temp
 [gen]

high

icu

male

gen

female

gen

true

icu

false

Figure 7: The decision tree for the post-operative patient routing task.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

 Core-Temp
 [icu]

 Gender
 [icu] (0)

 low

 Stable-Temp
 [gen]

 high

icu (0)

male

gen (2)

female

gen

 true

icu

 false

(a)

 Core-Temp
 [icu]

icu

low

 Stable-Temp
 [gen] (2)

high

gen (0)

 true

icu (0)

 false

(b)

 Core-Temp
 [icu] (1)

icu (0)

low

 Stable-Temp
 [gen]

high

gen (0)

true

icu (0)

false

(c)

Figure 8: The iterations of reduced error pruning for the decision tree
in Figure 7[34] using the validation set in Table 7[33]. The subtree that is
being considered for pruning in each iteration is highlighted in black.
The prediction returned by each non-leaf node is listed in square
brackets. The error rate for each node is given in round brackets.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Advantages of pruning:
Smaller trees are easier to interpret
Increased generalization accuracy when there is noise in
the training data (noise dampening).

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Model Ensembles

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Rather than creating a single model they generate a set of
models and then make predictions by aggregating the
outputs of these models.
A prediction model that is composed of a set of models is
called a model ensemble.
In order for this approach to work the models that are in
the ensemble must be different from each other.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

There are two standard approaches to creating
ensembles:

1 bagging.
2 boosting

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Bagging

When we use bagging (or bootstrap aggregating) each
model in the ensemble is trained on a random sample of
the dataset known as bootstrap samples.
Each random sample is the same size as the dataset and
sampling with replacement is used.
Consequently, every bootstrap sample will be missing
some of the instances from the dataset so each bootstrap
sample will be different and this means that models trained
on different bootstrap samples will also be different

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Bagging

When bagging is used with decision trees each bootstrap
sample only uses a randomly selected subset of the
descriptive features in the dataset. This is known as
subspace sampling.
The combination of bagging, subspace sampling, and
decision trees is known as a random forest model.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Bagging

MODEL ENSEMBLE

ID F1 F2 F3 Target
1 - - - -

2 - - - -

3 - - - -

4 - - - -

Bagging and
 Subspace Sampling

ID F1 F3 Target
1 - - -

1 - - -

2 - - -

3 - - -

Machine Learning
 Algorithm

ID F2 F3 Target
2 - - -

2 - - -

4 - - -

4 - - -

Machine Learning
 Algorithm

ID F1 F3 Target
1 - - -

3 - - -

3 - - -

4 - - -

Machine Learning
 Algorithm

F3 F2 F1

F1 F3

Figure 9: The process of creating a model ensemble using bagging
and subspace sampling.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Boosting

Boosting works by iteratively creating models and adding
them to the ensemble.
The iteration stops when a predefined number of models
have been added.
When we use boosting each new model added to the
ensemble is biased to pay more attention to instances that
previous models miss-classified.
This is done by incrementally adapting the dataset used to
train the models. To do this we use a weighted dataset

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Boosting

Weighted Dataset
Each instance has an associated weight wi ≥ 0,
Initially set to 1

n where n is the number of instances in the
dataset.
After each model is added to the ensemble it is tested on
the training data and the weights of the instances the
model gets correct are decreased and the weights of the
instances the model gets incorrect are increased.
These weights are used as a distribution over which the
dataset is sampled to created a replicated training set,
where the replication of an instance is proportional to its
weight.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Boosting

During each training iteration the algorithm:
1 Induces a model and calculates the total error, ε, by

summing the weights of the training instances for which the
predictions made by the model are incorrect.

2 Increases the weights for the instances misclassified using:

w[i]← w[i]×
(

1
2× ε

)
(5)

3 Decreases the weights for the instances correctly
classified:

w[i]← w[i]×
(

1
2× (1− ε)

)
(6)

4 Calculate a confidence factor, α, for the model such that
α increases as ε decreases:

α =
1
2
× loge

(
1− ε
ε

)
(7)

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Boosting

Once the set of models have been created the ensemble
makes predictions using a weighted aggregate of the
predictions made by the individual models.
The weights used in this aggregation are simply the
confidence factors associated with each model.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Boosting

Table 8: A simple bicycle demand predictions dataset and the
workings of the first three iterations of training an ensemble model
using boosting to predict RENTALS given TEMP.

Iteration 0 Iteration 1 Iteration 2
ID TEMP RENTALS Dist. Freq. M0(d) Dist. Freq. M1(d) Dist. Freq. M2(d)
1 4 Low 0.100 2 Low 0.062 0 High 0.167 2 Low
2 5 Low 0.100 1 Low 0.062 1 High 0.167 1 Low
3 7 Low 0.100 0 Low 0.062 1 High 0.167 3 Low
4 12 High 0.100 1 High 0.062 2 High 0.038 0 Low
5 18 High 0.100 1 High 0.062 0 High 0.038 0 Low
6 23 High 0.100 1 High 0.062 0 High 0.038 0 Low
7 27 High 0.100 1 High 0.062 1 High 0.038 0 Low
8 28 High 0.100 1 High 0.062 1 High 0.038 1 Low
9 32 Low 0.100 2 High 0.250 3 Low 0.154 1 Low
10 35 Low 0.100 0 High 0.250 1 Low 0.154 2 Low

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Boosting

5 10 15 20 25 30 35
Temperature

Low

High

Re
nt

al
s

(a) Training data

5 10 15 20 25 30 35
Temperature

Low

High

Re
nt

al
s

(b) The final ensemble model, M

Figure 10: (a) A plot of the bike rental dataset from Table 8[47]. (b) An
illustration of the final ensemble model trained using the boosting
algorithm. (c)–(e) A representation of the changing weights used to
generate sample datasets for the first iterations of the boosting
process.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Boosting

d1

d2

d3

d4

d5d6

d7

d8

d9

d10

(c) Distribution 0

d1
d2

d3

d4

d5

d6

d7
d8

d9

d10

(d) Distribution 1

d1

d2

d3
d4d5

d6
d7

d8

d9

d10

(e) Distribution 2

Figure 11: (a) A plot of the bike rental dataset from Table 8[47]. (b) An
illustration of the final ensemble model trained using the boosting
algorithm. (c)–(e) A representation of the changing weights used to
generate sample datasets for the first iterations of the boosting
process.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Boosting

w [1]← 0.100×
(

1
2× (1− 0.200)

)
← 0.0625

w [9]← 0.100×
(

1
2× 0.200

)
← 0.250

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gradient Boosting

M0(d) =
1
n

∑
i

ti (8)

M1(d) = M0(d) + M∆1(d) (9)

Mi(d) = Mi−1(d) + M∆i(d) (10)

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gradient Boosting

M4(d) = M3(d) + M∆4(d)

= (M2(d) + M∆3(d)) + M∆4(d)

= ((M1 + M∆2(d)) + M∆3(d)) + M∆4(d)

= (((M0(d) + M∆1(d)) + M∆2(d)) + M∆3(d)) + M∆4(d)

= M0(d) + M∆1(d) + M∆2(d) + M∆3(d) + M∆4(d)
(11)

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gradient Boosting

Table 9: A simple bicycle demand predictions dataset and the
workings of the first iterations of training a gradient boosting model.

ID TEMP RENTALS M0(d) t − M0(d) M∆1(d) M1(d) t − M1(d) M∆2(d) M2(d) t − M2(d) M∆3(d) M3(d)
1 4 602 1 287.1 -685.1 -460.9 826.2 -224.2 -167.2 659.0 -57.0 -34.1 624.9
2 5 750 1 287.1 -537.1 -460.9 826.2 -76.2 -167.2 659.0 91.0 -34.1 624.9
3 7 913 1 287.1 -374.1 -460.9 826.2 86.8 71.6 897.8 15.2 -34.1 863.7
4 12 1229 1 287.1 -58.1 -460.9 826.2 402.8 71.6 897.8 331.2 -34.1 863.7
5 18 1827 1 287.1 539.9 691.4 1 978.5 -151.5 71.6 2 050.1 -223.1 -34.1 2 016.1
6 23 2246 1 287.1 958.9 691.4 1 978.5 267.5 71.6 2 050.1 195.9 136.4 2 186.5
7 27 2127 1 287.1 839.9 691.4 1 978.5 148.5 71.6 2 050.1 76.9 136.4 2 186.5
8 28 1714 1 287.1 426.9 691.4 1 978.5 -264.5 71.6 2 050.1 -336.1 -34.1 2 016.1
9 32 838 1 287.1 -449.1 -460.9 826.2 11.8 71.6 897.8 -59.8 -34.1 863.7
10 35 625 1 287.1 -662.1 -460.9 826.2 -201.2 -167.2 659.0 -34.0 -34.1 624.9

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gradient Boosting

0 5 10 15 20 25 30 35 40
Temperature

0

500

1000

1500

2000

2500

Re
nt

al
s

(a) Training data

0 5 10 15 20 25 30 35 40
Temperature

0

500

1000

1500

2000

2500

Re
nt

al
s

(b) M0

Figure 12: (a) A plot of the bike rental dataset from Table 9[53]. (b)–(e)
Visualizations of the prediction models trained in the early iterations
of the gradient boosting process. (f) The final ensemble model trained
after 20 iterations of gradient boosting.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gradient Boosting

0 5 10 15 20 25 30 35 40
Temperature

0

500

1000

1500

2000

2500

Re
nt

al
s

(c) M1

0 5 10 15 20 25 30 35 40
Temperature

0

500

1000

1500

2000

2500

Re
nt

al
s

(d) M2

Figure 13: (a) A plot of the bike rental dataset from Table 9[53]. (b)–(e)
Visualizations of the prediction models trained in the early iterations
of the gradient boosting process. (f) The final ensemble model trained
after 20 iterations of gradient boosting.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gradient Boosting

0 5 10 15 20 25 30 35 40
Temperature

0

500

1000

1500

2000

2500

Re
nt

al
s

(e) M3

0 5 10 15 20 25 30 35 40
Temperature

0

500

1000

1500

2000

2500

Re
nt

al
s

(f) M20

Figure 14: (a) A plot of the bike rental dataset from Table 9[53]. (b)–(e)
Visualizations of the prediction models trained in the early iterations
of the gradient boosting process. (f) The final ensemble model trained
after 20 iterations of gradient boosting.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gradient Boosting

Mi(d) = Mi−1(d) + α×M∆i(d) (12)

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Gradient Boosting

Which approach should we use? Bagging is simpler to
implement and parallelize than boosting and, so, may be
better with respect to ease of use and training time.
Empirical results indicate:

boosted decision tree ensembles were the best performing
model of those tested for datasets containing up to 4,000
descriptive features.
random forest ensembles (based on bagging) performed
better for datasets containing more that 4,000 features.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Summary

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

The decision tree model makes predictions based on
sequences of tests on the descriptive feature values of a
query
The ID3 algorithm as a standard algorithm for inducing
decision trees from a dataset.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Decision Trees: Advantages
interpretable.
handle both categorical and continuous descriptive
features.
has the ability to model the interactions between
descriptive features (diminished if pre-pruning is
employed)
relatively, robust to the curse of dimensionality.
relatively, robust to noise in the dataset if pruning is used.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Decision Tress: Potential Disadvantages
trees become large when dealing with continuous features.
decision trees are very expressive and sensitive to the
dataset, as a result they can overfit the data if there are a
lot of features (curse of dimensionality)
eager learner (concept drift).

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

1 Alternative Feature Selection Metrics

2 Handling Continuous Descriptive Features

3 Predicting Continuous Targets

4 Noisy Data, Overfitting and Tree Pruning

5 Model Ensembles
Bagging
Boosting
Gradient Boosting

6 Summary

	Alternative Feature Selection Metrics
	Handling Continuous Descriptive Features
	Predicting Continuous Targets
	Noisy Data, Overfitting and Tree Pruning
	Model Ensembles
	Bagging
	Boosting
	Gradient Boosting

	Summary

