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Big Idea
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A paramaterised prediction model is initialised with a set
of random parameters and an error function is used to
judge how well this initial model performs when making
predictions for instances in a training dataset.
Based on the value of the error function the parameters
are iteratively adjusted to create a more and more accurate
model.
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Fundamentals
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Simple Linear Regression

Table: The office rentals dataset: a dataset that includes office
rental prices and a number of descriptive features for 10 Dublin
city-centre offices.

BROADBAND ENERGY RENTAL
ID SIZE FLOOR RATE RATING PRICE

1 500 4 8 C 320
2 550 7 50 A 380
3 620 9 7 A 400
4 630 5 24 B 390
5 665 8 100 C 385
6 700 4 8 B 410
7 770 10 7 B 480
8 880 12 50 A 600
9 920 14 8 C 570

10 1,000 9 24 B 620
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Simple Linear Regression

Table: The office rentals dataset: a dataset that includes office
rental prices and a number of descriptive features for 10 Dublin
city-centre offices.

RENTAL
ID SIZE PRICE

1 500 320
2 550 380
3 620 400
4 630 390
5 665 385
6 700 410
7 770 480
8 880 600
9 920 570

10 1,000 620
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Figure: A scatter plot of the SIZE and RENTAL PRICE features from
the office rentals dataset.
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Simple Linear Regression

From the scatter plot it appears that there is a linear
relationship between the SIZE and RENTAL PRICE.
The equation of a line can be written as:

y = mx + b (1)
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Simple Linear Regression

The scatter plot below shows the same scatter plot as
shown in Figure 1 [8] with a simple linear model added to
capture the relationship between office sizes and office
rental prices.
This model is:

RENTAL PRICE = 6.47 + 0.62× SIZE
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Simple Linear Regression

RENTAL PRICE = 6.47 + 0.62× SIZE

Using this model determine the expected rental price of the
730 square foot office:

RENTAL PRICE = 6.47 + 0.62× 730
= 459.07
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Simple Linear Regression

RENTAL PRICE = 6.47 + 0.62× SIZE

Using this model determine the expected rental price of the
730 square foot office:

RENTAL PRICE = 6.47 + 0.62× 730
= 459.07
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Simple Linear Regression

Mw(d) = w[0] + w[1]× d[1] (2)
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Measuring Error
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Figure: A scatter plot of the SIZE and RENTAL PRICE features from
the office rentals dataset. A collection of possible simple linear
regression models capturing the relationship between these two
features are also shown. For all models w[0] is set to 6.47. From top
to bottom the models use 0.4, 0.5, 0.62, 0.7 and 0.8 respectively for
w[1].
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Measuring Error
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Figure: A scatter plot of the SIZE and RENTAL PRICE features from
the office rentals dataset showing a candidate prediction model (with
w[0] = 6.47 and w[1] = 0.62) and the resulting errors.
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Measuring Error

L2(Mw,D) =
1
2

n∑
i=1

(ti −Mw(di [1]))
2 (3)

=
1
2

n∑
i=1

(ti − (w[0] + w[1]× di [1]))
2 (4)
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Measuring Error

Table: Calculating the sum of squared errors for the candidate model
(with w[0] = 6.47 and w[1] = 0.62) making predictions for the the
office rentals dataset.

RENTAL Model Error Squared
ID PRICE Prediction Error Error
1 320 316.79 3.21 10.32
2 380 347.82 32.18 1,035.62
3 400 391.26 8.74 76.32
4 390 397.47 -7.47 55.80
5 385 419.19 -34.19 1,169.13
6 410 440.91 -30.91 955.73
7 480 484.36 -4.36 19.01
8 600 552.63 47.37 2,243.90
9 570 577.46 -7.46 55.59

10 620 627.11 -7.11 50.51
Sum 5,671.64

Sum of squared errors (Sum/2) 2,835.82
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Error Surfaces

For every possible combination of weights, w[0] and w[1],
there is a corresponding sum of squared errors value that
can be joined together to make a surface.
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Figure: (a) A 3D surface plot and (b) a contour plot of the error
surface generated by plotting the sum of squared errors value for the
office rentals training set for each possible combination of values for
w[0] (from the range [−10,20]) and w[1] (from the range [−2,3]).
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Error Surfaces

The x-y plane is known as a weight space and the
surface is known as an error surface.
The model that best fits the training data is the model
corresponding to the lowest point on the error surface.
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Error Surfaces

Using Equation (4)[16] we can formally define this point on
the error surface as the point at which:

∂

∂w[0]
1
2

n∑
i=1

(ti − (w[0] + w[1]× di [1]))2 = 0 (5)

and
∂

∂w[1]
1
2

n∑
i=1

(ti − (w[0] + w[1]× di [1]))2 = 0 (6)

There are a number of different ways to find this point.
We will describe a guided search approach known as the
gradient descent algorithm.
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Standard Approach: Multivariate
Linear Regression with Gradient

Descent
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Multivariate Linear Regression

Table: A dataset that includes office rental prices and a number of
descriptive features for 10 Dublin city-center offices.

BROADBAND ENERGY RENTAL
ID SIZE FLOOR RATE RATING PRICE

1 500 4 8 C 320
2 550 7 50 A 380
3 620 9 7 A 400
4 630 5 24 B 390
5 665 8 100 C 385
6 700 4 8 B 410
7 770 10 7 B 480
8 880 12 50 A 600
9 920 14 8 C 570

10 1,000 9 24 B 620
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Multivariate Linear Regression

We can define a multivariate linear regression model as:
Mw(d) = w[0] + w[1]× d[1] + · · ·+ w[m]× d[m] (7)

= w[0] +
m∑

j=1

w[j]× d[j] (8)
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Multivariate Linear Regression

We can make Equation (8)[23] look a little neater by
inventing a dummy descriptive feature, d[0], that is always
equal to 1:

Mw(d) = w[0]× d[0] + w[1]× d[1] + . . .+ w[m]× d[m](9)

=
m∑

j=0

w[j]× d[j] (10)

= w · d (11)
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Multivariate Linear Regression

The sum of squared errors loss function, L2, definition that
we gave in Equation (4)[16] changes only very slightly to
reflect the new regression equation:

L2(Mw,D) =
1
2

n∑
i=1

(ti −Mw(di))
2 (12)

=
1
2

n∑
i=1

(ti − (w · di))
2 (13)
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Multivariate Linear Regression

This multivariate model allows us to include all but one of
the descriptive features in Table 3 [17] in a regression model
to predict office rental prices.
The resulting multivariate regression model equation is:

RENTAL PRICE = w[0] + w[1]× SIZE + w[2]× FLOOR

+ w[3]× BROADBAND RATE
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Multivariate Linear Regression

We will see in the next section how the best-fit set of
weights for this equation are found, but for now we will set:

w[0] = −0.1513,
w[1] = 0.6270,
w[2] = −0.1781,
w[3] = 0.0714.

This means that the model is rewritten as:

RENTAL PRICE = −0.1513 + 0.6270× SIZE

− 0.1781× FLOOR

+ 0.0714× BROADBAND RATE
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Multivariate Linear Regression

Using this model:

RENTAL PRICE = −0.1513 + 0.6270× SIZE

− 0.1781× FLOOR

+ 0.0714× BROADBAND RATE

we can, for example, predict the expected rental price of a
690 square foot office on the 11th floor of a building with a
broadband rate of 50 Mb per second as:

RENTAL PRICE = ?
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Multivariate Linear Regression

Using this model:

RENTAL PRICE = −0.1513 + 0.6270× SIZE

− 0.1781× FLOOR

+ 0.0714× BROADBAND RATE

we can, for example, predict the expected rental price of a
690 square foot office on the 11th floor of a building with a
broadband rate of 50 Mb per second as:

RENTAL PRICE = −0.1513 + 0.6270× 690
−0.1781× 11 + 0.0714× 50

= 434.0896
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Gradient Descent

(a) (b)

Figure: (a) A 3D surface plot and (b) a contour plot of the same error
surface. The lines indicate the path that the gradient decent algorithm
would take across this error surface from different starting positions to
the global minimum - marked as the white dot in the centre.



The journey across the error surface that is taken by the
gradient descent algorithm when training the simple
version of the office rentals example - involving just SIZE

and RENTAL PRICE.

(a) (b)

Figure: (a) A 3D surface plot and (b) a contour plot of the error
surface for the office rentals dataset showing the path that the
gradient descent algorithm takes towards the best fit model.
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Figure: A selection of the simple linear regression models developed
during the gradient descent process for the office rentals dataset. The
final panel shows the sum of squared error values generated during
the gradient descent process.
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Gradient Descent

Require: set of training instances D
Require: a learning rate α that controls how quickly the

algorithm converges
Require: a function, errorDelta, that determines the direction

in which to adjust a given weight, w[j], so as to move down
the slope of an error surface determined by the dataset, D

Require: a convergence criterion that indicates that the
algorithm has completed

1: w← random starting point in the weight space
2: repeat
3: for each w[j] in w do
4: w[j]← w[j] + α× errorDelta(D,w[j])
5: end for
6: until convergence occurs

The gradient descent algorithm for training multivariate
linear regression models.
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Gradient Descent

The most important part to the gradient descent algorithm
is Line Rule 4 on which the weights are updated.

w[j]← w[j] + α× errorDelta(D,w[j])

Each weight is considered independently and for each one
a small adjustment is made by adding a small delta value
to the current weight, w[j].
This adjustment should ensure that the change in the
weight leads to a move downwards on the error surface.
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Gradient Descent

Imagine for a moment that our training dataset, D contains
just one training example: (d, t)
The gradient of the error surface is given as the partial
derivative of L2 with respect to each weight, w[j]:

∂

∂w[j]
L2 (Mw,D) =

∂

∂w[j]

(
1
2
(t −Mw (d))2

)
(14)

= (t −Mw(d))×
∂

∂w[j]
(t −Mw(d)) (15)

= (t −Mw(d))×
∂

∂w[j]
(t − (w · d)) (16)

= (t −Mw(d))×−d[j] (17)
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Gradient Descent

Adjusting the calculation to take into account multiple
training instances:

∂

∂w[j]
L2(Mw,D) =

n∑
i=1

((ti −Mw (di))× di [j])

We use this equation to define the errorDelta in our
gradient descent algorithm.

w[j]← w[j] + α

n∑
i=1

((ti −Mw (di))× di [j])︸ ︷︷ ︸
errorDelta(D,w[j])
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Choosing Learning Rates & Initial Weights

The learning rate, α, determines the size of the adjustment
made to each weight at each step in the process.
Unfortunately, choosing learning rates is not a well defined
science.
Most practitioners use rules of thumb and trial and error.
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Choosing Learning Rates & Initial Weights

(a) (b) (c)

Figure: Plots of the journeys made across the error surface for the
simple office rentals prediction problem for different learning rates: (a)
a very small learning rate (0.002), (b) a medium learning rate (0.08)
and (c) a very large learning rate (0.18).
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Choosing Learning Rates & Initial Weights

A typical range for learning rates is [0.00001,10]
Based on empirical evidence, choosing random initial
weights uniformly from the range [−0.2,0.2] tends to work
well.
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A Worked Example

We are now in a position to build a linear regression model
that uses all of the continuous descriptive features in the
office rentals dataset.
The general structure of the model is:

RENTAL PRICE = w[0] + w[1]× SIZE + w[2]× FLOOR

+ w[3]× BROADBAND RATE
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A Worked Example

Table: The office rentals dataset: a dataset that includes office
rental prices and a number of descriptive features for 10 Dublin
city-centre offices.

BROADBAND ENERGY RENTAL
ID SIZE FLOOR RATE RATING PRICE

1 500 4 8 C 320
2 550 7 50 A 380
3 620 9 7 A 400
4 630 5 24 B 390
5 665 8 100 C 385
6 700 4 8 B 410
7 770 10 7 B 480
8 880 12 50 A 600
9 920 14 8 C 570

10 1,000 9 24 B 620
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A Worked Example

For this example let’s assume that:
α = 0.00000002

Initial Weights
w[0]: -0.146 w[1]: 0.185 w[2]: -0.044 w[3]: 0.119
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A Worked Example

Iteration 1
RENTAL Squared errorDelta(D,w[i])

ID PRICE Pred. Error Error w[0] w[1] w[2] w[3]
1 320 93.26 226.74 51411.08 226.74 113370.05 906.96 1813.92
2 380 107.41 272.59 74307.70 272.59 149926.92 1908.16 13629.72
3 400 115.15 284.85 81138.96 284.85 176606.39 2563.64 1993.94
4 390 119.21 270.79 73327.67 270.79 170598.22 1353.95 6498.98
5 385 134.64 250.36 62682.22 250.36 166492.17 2002.91 25036.42
6 410 130.31 279.69 78226.32 279.69 195782.78 1118.76 2237.52
7 480 142.89 337.11 113639.88 337.11 259570.96 3371.05 2359.74
8 600 168.32 431.68 186348.45 431.68 379879.24 5180.17 21584.05
9 570 170.63 399.37 159499.37 399.37 367423.83 5591.23 3194.99
10 620 187.58 432.42 186989.95 432.42 432423.35 3891.81 10378.16

Sum 1067571.59 3185.61 2412073.90 27888.65 88727.43
Sum of squared errors (Sum/2) 533785.80
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A Worked Example

w[j]← w[j] + α

n∑
i=1

((ti −Mw (di))× di [j])︸ ︷︷ ︸
errorDelta(D,w[j])

Initial Weights
w[0]: -0.146 w[1]: 0.185 w[2]: -0.044 w[3]: 0.119

Example

w[1]← 0.185 + 0.00000002× 2,412,074 = 0.23324148

New Weights (Iteration 1)
w[0]: -0.146 w[1]: 0.233 w[2]: -0.043 w[3]: 0.121
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A Worked Example

Iteration 2
RENTAL Squared errorDelta(D,w[i])

ID PRICE Pred. Error Error w[0] w[1] w[2] w[3]
1 320 117.40 202.60 41047.92 202.60 101301.44 810.41 1620.82
2 380 134.03 245.97 60500.69 245.97 135282.89 1721.78 12298.44
3 400 145.08 254.92 64985.12 254.92 158051.51 2294.30 1784.45
4 390 149.65 240.35 57769.68 240.35 151422.55 1201.77 5768.48
5 385 166.90 218.10 47568.31 218.10 145037.57 1744.81 21810.16
6 410 164.10 245.90 60468.86 245.90 172132.91 983.62 1967.23
7 480 180.06 299.94 89964.69 299.94 230954.68 2999.41 2099.59
8 600 210.87 389.13 151424.47 389.13 342437.01 4669.60 19456.65
9 570 215.03 354.97 126003.34 354.97 326571.94 4969.57 2839.76
10 620 187.58 432.42 186989.95 432.42 432423.35 3891.81 10378.16

Sum 886723.04 2884.32 2195615.84 25287.08 80023.74
Sum of squared errors (Sum/2) 443361.52
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A Worked Example

w[j]← w[j] + α

n∑
i=1

((ti −Mw (di))× di [j])︸ ︷︷ ︸
errorDelta(D,w[j])

Initial Weights (Iteration 2)
w[0]: -0.146 w[1]: 0.233 w[2]: -0.043 w[3]: 0.121

Exercise

w[1]←?, α = 0.00000002

New Weights (Iteration 2)
w[0]: ? w[1]: ? w[2]: ? w[3]: ?
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A Worked Example

w[j]← w[j] + α

n∑
i=1

((ti −Mw (di))× di [j])︸ ︷︷ ︸
errorDelta(D,w[j])

Initial Weights (Iteration 2)
w[0]: -0.146 w[1]: 0.233 w[2]: -0.043 w[3]: 0.121

Exercise

w[1]← −0.233 + 0.00000002× 2195616.08 = 0.27691232

New Weights (Iteration 2)
w[0]: -0.145 w[1]: 0.277 w[2]: -0.043 w[3]: 0.123
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A Worked Example

The algorithm then keeps iteratively applying the weight
update rule until it converges on a stable set of weights
beyond which little improvement in model accuracy is
possible.
After 100 iterations the final values for the weights are:

w[0] = −0.1513,
w[1] = 0.6270,
w[2] = −0.1781
w[3] = 0.0714

which results in a sum of squared errors value of 2,913.5
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