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Smoothing
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@ The standard way to avoid this issue is to use smoothing.

@ Smoothing takes some of the probability from the events
with lots of the probability share and gives it to the other
probabilities in the set.



@ There are several different ways to smooth probabilities,
we will use Laplacian smoothing.

Laplacian Smoothing (conditional probabilities)

count(f = v|t) + k
count(f|t) + (k x |Domain(f)|)

P(f=v|t) =




Raw P(GC = none|~fr) 0.8571
Probabilities P(GC = guarantor|—fr) 0
P(GC = coapplicant|—fr) 0.1429
Smoothing k 3
Parameters count(GC|—fr) 14
count(GC = none|—fr) 12
count(GC = guarantor|~—fr) 0
count(GC = coapplicant|—fr) 2
|Domain(GC)| 3
Smoothed P(GC = none|~fr) = 1753 0.6522
Probabiliies  P(GC = guarantor|~fr) = 5 0.1304
P(GC = coapplicant|~fr) = 25+ 0.2174

Table: Smoothing the posterior probabilities for the
GUARANTOR/COAPPLICANT feature conditioned on FRAUDULENT

being False.
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Table: The Laplacian smoothed, with k = 3, probabilities needed by
a Naive Bayes prediction model calculated from the fraud detection
dataset. Notation key: FR=FRAUDULENT, CH=CREDIT HISTORY, GC

= GUARANTOR/COAPPLICANT, ACC = ACCOMODATION, T="True’,

F="False’.



Smoothing

CREDIT HISTORY GUARANTOR/COAPPLICANT ACCOMMODATION  FRAUDULENT
paid guarantor free ?




P(fry = 0.3 P(—-fry = 0.7
P(CH = paid|fr) = 0.2222 P(CH = paid|—-fr) = 0.2692
P(GC = guarantor|fr) = 0.2667 P(GC = guarantor|~fr) = 0.1304
P(ACC = Freelfr) = 0.2 P(ACC = Free|-fr) = 0.1739
(ITk-; P(a[m]|fr)) x P(fr) = 0.0036

(T17-, P(q[m]|~fr)) x P(~fr) = 0.0043

Table: The relevant smoothed probabilities, from Table 2 !, needed
by the Naive Bayes prediction model in order to classify the query
from the previous slide and the calculation of the scores for each
candidate classification.



Prob. Density Functions

Continuous Features: Probability
Density Functions



Prob. Density Functions

@ A probability density function (PDF) represents the
probability distribution of a continuous feature using a
mathematical function, such as the normal distribution.
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Prob. Density Functions

@ A PDF defines a density curve and the shape of the of the
curve is determined by:
o the statistical distribution that is used to define the PDF
o the values of the statistical distribution parameters



Prob. Density Functions

Table: Definitions of some standard probability distributions.
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Prob. Density Functions

Values V;I;z;s Values
(a) Normal/Student-t (b) Exponential (c) Mixture of Gaussians

Figure: Plots of some well known probability distributions.



Prob. Density Functions

(a) (b)

Figure: Histograms of two unimodal datasets: (a) the distribution has
light tails; (b) the distribution has fat tails.



Prob. Density Functions

— Normal — Normal
-- Student-t --- Student-t

Figure: lllustration of the robustness of the student-t distribution to
outliers: (a) a density histogram of a unimodal dataset overlaid with
the density curves of a normal and a student-t distribution that have
been fitted to the data; (b) a density histogram of the same dataset
with outliers added, overlaid with the density curves of a normal and a
student-t distribution that have been fitted to the data. The student-¢
distribution is less affected by the introduction of outliers. (This figure
is inspired by Figure 2.16 in (Bishop, 2006).)



Prob. Density Functions
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Figure: lllustration of how a mixture of Gaussians model is composed
of a number of normal distributions. The curve plotted using a solid
line is the mixture of Gaussians density curve, created using an
appropriately weighted summation of the three normal curves, plotted

using dashed and dotted lines.



Prob. Density Functions

@ A PDF is an abstraction over a density histogram and
consequently PDF represents probabilities in terms of area
under the curve.

@ To use a PDF to calculate a probability we need to think in
terms of the area under an interval of the PDF curve.

@ We can calculate the area under a PDF by looking this up
in a probability table or to use integration to calculate the
area under the curve within the bounds of the interval.



Prob. Density Functions
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Figure: (a) The area under a density curve between the limits x — 5
and x + 5; (b) the approximation of this area computed by

PDF(x) x ¢; and (c) the error in the approximation is equal to the
difference between area A, the area under the curve omitted from the
approximation, and area B, the area above the curve erroneously
included in the approximation. Both of these areas will get smaller as
the width of the interval gets smaller, resulting in a smaller error in the
approximation.



Prob. Density Functions

@ There is no hard and fast rule for deciding on interval size
- instead, this decision is done on a case by case basis
and is dependent on the precision required in answering a
question.

@ To illustrate how PDFs can be used in Naive Bayes models
we will extend our loan application fraud detection query to
have an ACCOUNT BALANCE feature



Table: The dataset from the loan application fraud detection domain
with a new continuous descriptive features added: ACCOUNT
BALANCE

CREDIT GUARANTOR/ ACCOUNT
ID HISTORY COAPPLICANT ACCOMMODATION BALANCE FRAUD
1 current none own 56.75 true
2 current none own 1,800.11 false
3 current none own 1,341.03 false
4 paid guarantor rent 749.50 true
5 arrears none own 1,150.00 false
6 arrears none own 928.30 true
7 current none own 250.90 false
8 arrears none own 806.15 false
9 current none rent 1,209.02 false
10 none none own 405.72 true
11 current coapplicant own 550.00 false
12 current none free 223.89 true
13 current none rent 103.23 true
14 paid none own 758.22 false
15 arrears none own 430.79 false
16 current none own 675.11 false
17 arrears coapplicant rent 1,657.20 false
18 arrears none free 1,405.18 false
19 arrears none own 760.51 false

20 current none own 985.41 false




Prob. Density Functions

@ We need to define two PDFs for the new ACCOUNT
BALANCE (AB) feature with each PDF conditioned on a
different value in the domain or the target:

o P(AB = X|fr) = PDF;(AB = X|fr)
o P(AB = X|~fr) = PDFy(AB = X|~fr)

@ Note that these two PDFs do not have to be defined using
the same statistical distribution.



Prob. Density Functions
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Figure: Histograms, using a bin size of 250 units, and density curves
for the ACCOUNT BALANCE feature: (a) the fraudulent instances
overlaid with a fitted exponential distribution; (b) the non-fraudulent
instances overlaid with a fitted normal distribution.



Prob. Density Functions

@ From the shape of these histograms it appears that

o the distribution of values taken by the ACCOUNT BALANCE
feature in the set of instances where the target feature
FRAUDULENT="True’ follows an exponential distribution

o the distributions of values taken by the ACCOUNT BALANCE
feature in the set of instances where the target feature
FRAUDULENT="False’ is similar to a normal distribution.

@ Once we have selected the distributions the next step is to
fit the distributions to the data.



Prob. Density Functions

@ To fit the exponential distribution we simply compute the
sample mean, X, of the ACCOUNT BALANCE feature in the
set of instances where FRAUDULENT="True’ and set the A
parameter equal to one divided by X.

@ To fit the normal distribution to the set of instances where
FRAUDULENT="False’ we simply compute the sample
mean and sample standard deviation, s, for the ACCOUNT
BALANCE feature for this set of instances and set the
parameters of the normal distribution to these values.



Table: Partitioning the dataset based on the value of the target
feature and fitting the parameters of a statistical distribution to model
the ACCOUNT BALANCE feature in each partition.

ACCOUNT
ID BALANCE FRAUD
2 1800.11 false
3 1341.03 false
ACCOUNT 5 1150.00 false
ID ... BALANCE FRAUD 7 250.90 false
1 56.75 true 8 806.15 false
4 749.50 true 9 1209.02 false
6 928.30 true 11 550.00 false
10 ... 405.72 true 14 758.22 false
12 223.89 true 15 430.79 false
13 103.23 true 16 675.11 false
AB 411.22 17 1657.20 false
A="l/z8 0.0024 18 1405.18  false
19 760.51 false
20 985.41 false

AB 984.26

sd(AB) 460.94




Prob. Density Functions

Table: The Laplace smoothed (with k = 3) probabilities needed by a
naive Bayes prediction model calculated from the dataset in Table 5
231 extended to include the conditional probabilities for the new
ACCOUNT BALANCE feature, which are defined in terms of PDFs.

P(fy = 0.3 P(-fry = 0.7
P(CH = nonel|fr) = 0.2222 P(CH = none|—fr) = 0.1154
P(CH = paid|fr) =  0.2222 P(CH = paid|-fr) =  0.2692
P(CH = current|fr) = 0.3333 P(CH = current|—fr) = 0.2692
P(CH = arrears|fr) = 0.2222 P(CH = arrears|—fr) = 0.3462
P(GC = nonel|fr) = 0.5333 P(GC = none|—fr) = 0.6522
P(GC = guarantor|fr) = 0.2667 P(GC = guarantor|—fr) = 0.1304
P(GC = coapplicant|fr) = 0.2 P(GC = coapplicant|—fr) = 0.2174
P(ACC = own|fr) =  0.4667 P(ACC = own|—fr) = 0.6087
P(ACC = rent|fr) = 0.3333 P(ACC = rent|—fr) = 0.2174
P(ACC = free|fr) = 0.2 P(ACC = free|—fr) = 0.1739

P(AB = x|fr) P(AB = x|=fr)

Xﬂ
X7
~ E ~ N [ p =984.26,
A = 0.0024
o = 460.94




Prob. Density Functions

Table: A query loan application from the fraud detection domain.

Credit Guarantor/ Account
History CoApplicant Accomodation Balance Fraudulent
paid guarantor free 759.07 ?




Prob. Density Functions

Table: The probabilities, from Table 7 %, needed by the naive Bayes
prediction model to make a prediction for the query

(CH = ‘paid’, GC = ‘guarantor’, ACC =

calculation of the scores for each candidate prediction.

‘free’, AB = 759.07) and the

P(fr)

P(CH = paid|fr)

P(GC = guarantor|fr)
P(ACC = )
P(AB = 759.07|fr)

759.07,
~ E
A = 0.0024

free|fr

0.3 P(—fr)
0.2222 P(CH = paid|—fr)
0.2667  P(GC = guarantor|—fr)
0.2 P(ACC = free|—fr)
P(AB = 759.07|~fr)
759.07,
0.00039 ~ N | =984.26,
o =460.94

0.7

0.2692
0.1304
0.1739

0.00077

(ITk-s P(alkllfr)) x
(ITk-+ P(alKk]|=fr)) x

P(fr) = 0.0000014
P(~fr) = 0.0000033




Continuous Features: Binning



@ In Section 3.6.2 we explained two of the best known
binning techniques equal-width and equal-frequency.

@ We can use these techniques to bin continuous features
into categorical features

@ In general we recommend equal-frequency binning.



Table: The dataset from a loan application fraud detection domain
with a second continuous descriptive feature added: LOAN AMOUNT

CREDIT GUARANTOR/ ACCOUNT LoAN
ID  HISTORY COAPPLICANT ACCOMMODATION  BALANCE AMOUNT FRAUD
1 current none own 56.75 900 true
2 current none own 1800.11 150000 false
3 current none own 1341.03 48000 false
4 paid guarantor rent 749.50 10000 true
5 arrears none own 1150.00 32000 false
6 arrears none own 928.30 250000 true
7 current none own 250.90 25000 false
8 arrears none own 806.15 18500 false
9 current none rent 1209.02 20000 false
10 none none own 405.72 9500 true
11 current coapplicant own 550.00 16750 false
12 current none free 223.89 9850 true
13 current none rent 103.23 95500 true
14 paid none own 758.22 65000 false
15 arrears none own 430.79 500 false
16 current none own 675.11 16000 false
17 arrears coapplicant rent 1657.20 15450 false
18 arrears none free 1405.18 50000 false
19 arrears none own 760.51 500 false

20 current none own 985.41 35000 false




Table: The LOAN AMOUNT continuous feature discretized into 4
equal-frequency bins.

BINNED BINNED
LoAN LoAN LOAN LoAN
1D AMOUNT AMOUNT FRAUD 1D AMOUNT AMOUNT FRAUD
15 500 bin1 false 9 20,000 bin3 false
19 500 bin1 false 7 25,000 bin3 false
1 900 bin1 true 5 32,000 bin3 false
10 9,500 bin1 true 20 35,000 bin3 false
12 9,850 bin1 true 3 48,000 bin3 false
4 10,000 bin2 true 18 50,000 bin4 false
17 15,450 bin2 false 14 65,000 bin4 false
16 16,000 bin2 false 13 95,500 bin4 true
11 16,750 bin2 false 2 150,000 bin4 false

8 18,500 bin2 false 6 250,000 bin4 true




@ Once we have discretized the data we need to record the
raw continuous feature threshold between the bins so that
we can use these for query feature values.

Table: The thresholds used to discretize the LOAN AMOUNT feature in
queries.

Bin Thresholds
Bin1 <9,925
9,925 < Bin2 < 19,250
19,225 < Bin3 < 49,000
49,000 < Bin4




Table: The Laplace smoothed (with k = 3) probabilities needed by a
naive Bayes prediction model calculated from the fraud detection
dataset. Notation key: FR = FRAUD, CH = CREDIT HISTORY, AB =
ACCOUNT BALANCE, GC = GUARANTOR/COAPPLICANT, ACC =
ACCOMMODATION, BLA = BINNED LOAN AMOUNT.

P(fy = 03 P(=fr) = 0.7
P(CH = nonel|fr) = 0.2222 P(CH = none|—fr) = 0.1154
P(CH = paid|fr) = 0.2222 P(CH = paid|—fr) = 0.2692
P(CH = current|fr) = 0.3333 P(CH = current|—fr) = 0.2692
P(CH = arrears|fr) = 0.2222 P(CH = arrears|—fr) = 0.3462
P(GC = nonel|fr) =  0.5333 P(GC = none|—fr) =  0.6522
P(GC = guarantor|fr) = 0.2667 P(GC = guarantor|—fr) = 0.1304
P(GC = coapplicant|fr) = 0.2 P(GC = coapplicant|—fr) = 0.2174
P(ACC = own|fr) =  0.4667 P(ACC = own|—fr) =  0.6087
P(ACC = rent|fry =  0.3333 P(ACC = rent|-fr) = 0.2174
P(ACC = free|fr) = 0.2 P(ACC = free|—fr) = 0.1739
P(AB = x|fr) P(AB = x|—fr)
X,
~ E( % > ~ N| = 984.26,
A = 0.0024
o = 460.94
P(BLA = binl|fr) = 0.3333 P(BLA = bin1|—fr) = 0.1923
P(BLA = bin2|fr) =  0.2222 P(BLA = bin2|—-fr) =  0.2692
P(BLA = bin3|fr) = 0.1667 P(BLA = bin3|—~fr) = 0.3077
P(BLA = bin4|fr) =  0.2778 P(BLA = bin4|—-fry =  0.2308




Table: A query loan application from the fraud detection domain.

Credit Guarantot/ Account Loan
History CoApplicant Accomodation Balance Amount Fraudulent
paid guarantor free 759.07 8,000 ?




Table: The relevant smoothed probabilities, from Table 13 71, needed
by the naive Bayes model to make a prediction for the query

(CH = ‘paid’, GC = ‘guarantor’, ACC = free’, AB = 759.07, LA = 8 000)
and the calculation of the scores for each candidate prediction.

P(fry = 0.3 P(—-fry = 07

P(CH = paid|fr) = 0.2222 P(CH = paid|-fr) = 0.2692
P(GC = guarantor|fr) = 0.2667 P(GC = guarantor|-fr) = 0.1304

P(ACC = free|fr) = 0.2 P(ACC = free|~fr) = 0.1739

P(AB = 759.07|fr) P(AB = 759.07|~fr)
759.07
759.07,
~ E = 0.00039 ~ N | pu=0984.26, = 0.00077
A =0.0024
o =460.94
P(BLA = bin1|fr) = 0.3333 P(BLA = bin1|-fr) = 0.1923

(ITk-, P(alk] | fr)) x P(fr) = 0.000000462
(ITk_s P(alk] | —fr)) x P(—fr) = 0.000000633




Bayesian Networks



Bayesian Nets

@ Bayesian networks use a graph-based representation to
encode the structural relationships—such as direct
influence and conditional independence—between subsets
of features in a domain.

@ Consequently, a Bayesian network representation is
generally more compact than a full joint distribution, yet is
not forced to assert global conditional independence
between all descriptive features.



Bayesian Nets

A Bayesian Network is a directed acyclical graph that is
composed of thee basic elements:

@ nodes
@ edges
@ conditional probability tables (CPT)



Bayesian Nets
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Figure: (a) A Bayesian network for a domain consisting of two binary
features. The structure of the network states that the value of feature
A directly influences the value of feature B. (b) A Bayesian network
consisting of 4 binary features with a path containing 3 generations of
nodes: D, C, and B.



Bayesian Nets

@ In probability terms the directed edge from A to B in Figure
(a) on the previous slide states that:

P(A, B) = P(B|A) x P(A) (1)

@ For example, the probability of the event aand —b is
P(a,—b) = P(—bla) x P(a) = 0.7 x 0.4 = 0.28



Bayesian Nets

@ Equation (1) can be generalized to the statement that for

any network with N nodes, the probability of an event
X1,...,Xp, can be computed using the following formula:

P(x1,...,xn) = [ | P(xi|Parents(x;)) (2)

i=1



Bayesian Nets

@ For example, using the more complex Bayesian network in
figure (b) above, we can calculate the probability of the
joint event P(a,—b, —c, d) as follows:

=0.5x0.8x04x04=0.064



Bayesian Nets

@ We can uses Bayes’ Theorem to invert the dependencies
between nodes in a network.

@ Returning to the simpler network in figure (a) above we can
calculate P(a|—b) as follows:

_ P(-bla) x P(a) P(—bla) x P(a)
HETD = TR e S PblA)
P(—b|a) x P(a)
(P(-bia) x P(a)) + (P(-bl-a) x P(~a)

0.7x04
(0.7 x0.4) + (0.6 x 0.6) 04375




Bayesian Nets

@ For conditional independence we need to take into account
not only the parents of a node by also the state of its
children and their parents.

@ The set of nodes in a graph that make a node independent
of the rest of the graph are known as the Markov blanket
of a node.



Bayesian Nets
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Figure: A depiction of the Markov blanket of a node. The gray nodes
define the Markov blanket of the black node. The black node is
conditionally independent of the white nodes given the state of the
gray nodes.



Bayesian Nets

@ The conditional independence of a node x; in a graph with
nnodes is defines as:

P(Xi|X17'"7Xi—17Xi+17"'7Xn) =

P(xi|Parents(x;))) [  P(xj|Parents(x;))  (3)
je€Children(x;)



Bayesian Nets

@ Applying the equation of the preceding slide to the network
in figure (b) above we can calculate the probability of
P(c|—a, b,d) as

P(c|—a, b,d) = P(c|d) x P(b|c,—a)
=02x04=0.08



Bayesian Nets

@ A naive Bayes classifier is a Bayesian network with a
specific topological structure.



Bayesian Nets

()

Figure: (a) A Bayesian network representation of the conditional
independence asserted by a naive Bayes model between the
descriptive features given knowledge of the target feature; (b) a
Bayesian network representation of the conditional independence
assumption for the naive Bayes model in the fraud example.



Bayesian Nets

@ When we computed a conditional probability for a target
feature using a naive Bayes model, we used the following
calculation

P(td[1],....d[n)) =P(t) T Pl

j€Children(t)

@ This equation is equivalent to Equation (3)” from earlier.



Bayesian Nets

@ Computing a conditional probability for a node becomes
more complex if the value of one or more of the parent
nodes is unknown.



Bayesian Nets

@ For example, in the context of the network in figure (b)
above, to compute P(b|a, d) where the status of node C in
unknown we would do the following calculations:

@ Compute the distribution for C given D: P(c | d) = 0.2,

P(—c|d)=0.8

Q Compute P(b] a, C)b summlng out C:
P(b|a,C)=>_;P(bl|a Ci)
P(b|a,C)= ZPb|aC, Z Pt(’aacf;’

_ (P(b|a.c)x P(a) x P(c)) + (P(b]| a,=c) x P(a) x P(=c))
(P(a) x P(c)) + (P(a) x P(=c))

_(02x0.4x02)+(05x04x08) _ 4

N (0.4 x 0.2) + (0.4 x 0.8) e




Bayesian Nets

@ This example illustrates the power of Bayesian networks.
e When complete knowledge of the state of all the nodes in
the network is not available, we clamp the values of nodes
that we do have knowledge of and sum out the unknown
nodes.



Bayesian Nets
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Figure: Two different Bayesian networks, each defining the same full
joint probability distribution.



Bayesian Nets

@ We can illustrate that these two networks encode the same
joint probability distribution by using each network to
compute P(—a, b, c)

@ Using network (a) we get:

P(—a, b, c) = P(c|—a, b) x P(b|-a) x P(—a)
=025%x05%x04=0.05

@ Using network (b) we get:

P(-a, b, c) = P(—alc, b) x P(b|c) x P(c)
=05%x05x%x0.2=0.05



Bayesian Nets

@ The simplest was to construct a Bayesian network is to use
a hybrid approach where:
© the topology of the network is given to the learning
algorithm,
@ and the learning task involves inducing the CPT from the
data.



Bayesian Nets

Table: (a) Some socio-economic data for a set of countries; (b) a
binned version of the data listed in (a).

COUNTRY GINI ScHooL LIFE GINI ScHooL LIFE

COEF YEARS Exp CPI COEF YEARS Exp CPI
Afghanistan 27.82 0.40 59.61 1.52 low low low low
Argentina 44.49 10.10 75.77 3.00 high low low low
Australia 35.19 11.50 82.09 8.84 low high high high
Brazil 54.69 7.20 73.12 3.77 high low low low
Canada 32.56 14.20 80.99 8.67 low high high high
China 42.06 6.40 74.87 3.64 high low low low
Egypt 30.77 5.30 70.48 2.86 low low low low
Germany 28.31 12.00 80.24 8.05 low high high high
Haiti 59.21 3.40 45.00 1.80 high low low low
Ireland 34.28 11.50 80.15 7.54 low high high high
Israel 39.2 12.50 81.30 5.81 low high high high
New Zealand 36.17 12.30 80.67 9.46 low high high high
Nigeria 48.83 410 51.30 2.45 high low low low
Russia 40.11 12.90 67.62 2.45 high high low low
Singapore 42.48 6.10 81.788 9.17 high low high high
South Africa 63.14 8.50 54.547 4.08 high low low low
Sweden 25.00 12.80 81.43 9.30 low high high high
UK. 35.97 13.00 80.09 7.78 low high high high
USA 40.81 13.70 78.51 7.14 high high high high
Zimbabwe 50.10 6.7 53.684 2.23 high low low low

(a) (b)
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Figure: A Bayesian network that encodes the causal relationships
between the features in the corruption domain. The CPT entries have
been calculated using the data from Table 16 ©"(b).
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M(q) = argmax BayesianNetwork(t = 1,q) (4)
Ielevels(t)



Bayesian Nets

@ We wish to predict the CPI for a country with the follow
profile:

GINI COEF = ’high’, SCHOOL YEARS = ‘high’
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CPl=H,SY = H,GC = H)
P(SY = H,GC = H)

> P(CPI=H,SY =H,GC = H, LE = i)
ieH,L

P(CPI = H|SY = H,GC = H) =

P(SY = H,GC = H)



Bayesian Nets

3" P(CPI=H,SY =H,GC = H,LE = i)
ie{H,L}
= Y P(CPI=H|SY = H,LE = i) x P(SY = H|GC = H)
ie{H,L}
x P(LE = i|GC = H) x P(GC = H)

= (P(CPI = H|SY = H,LE = H) x P(SY = H|GC = H)
x P(LE = H|GC = H) x P(GC = H))
+ (P(CPI = H|SY = H, LE = L) x P(SY = H|GC = H)
x P(LE = L|GC = H) x P(GC = H))

=(1.0x0.2x 0.2 x0.5) + (0 x 0.2 x 0.8 x 0.5) = 0.02
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P(SY = H,GC = H) = P(SY = H|GC = H) x P(GC = H)
=0.2x05=0.1



Bayesian Nets

0.02
P(CPI=H|SY = H,GC = H) = o= = 0.2



Bayesian Nets

@ Because of the calculation complexity that can arise when
using Bayesian networks to do exact inference a popular
approach is to approximate the required probability
distribution using Markov Chain Monte Carlo algorithms.

@ Gibbs sampling is one of the best known MCMC
algorithms.
@ Clamp the values of the evidence variables and randomly
assign the values of the non-evidence variables.
© Generate samples by changing the value of one of the
non-evidence variables using the distribution for the node
conditioned on the state of the rest of the network.



Bayesian Nets

Table: Examples of the samples generated using Gibbs sampling.

Sample Gibbs Feature GINI ScHooL LIFE
Number Iteration Updated COEF YEARS ExpP CPI

1 37 CPI high high high  low
2 44 LIFE ExXP  high high high  low
3 51 CPI high high high  low
4 58 LIFE EXP  high high low high
5 65 CPI high high high  low
6 72 LIFE ExP  high high high  low
7 79 CPI high high low high
8 86 LIFE EXP  high high low low
9 93 CPI high high high  low
10 100 LIFE EXP  high high high  low
11 107 CPI high high low  high
12 114 LIFE ExXP  high high high  low
13 121 CPI high high high  low
14 128 LIFE EXP  high high high  low
15 135 CPI high high high  low
16 142 LIFE EXP  high high low low



Bayesian Nets

M(q) = argmax Gibbs (t = /,q) (5)

Ielevels(t)



Summary



@ Naive Bayes models can suffer from zero probabilities of
relatively rare events. Smoothing is an easy way to
combat this.

@ Two ways to handle continuous features in
probability-based models are: Probability density
functions and Binning

@ Using probability density functions requires that we match
the observed data to an existing distribution.

@ Although binning results in information loss it is a simple
and effective way to handle continuous features in
probability-based models.

@ Bayesian network representation is generally more
compact than a full joint distribution, yet is not forced to
assert global conditional independence between all
descriptive features.
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